The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr\"odinger Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 80-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hamiltonian of a system of three quantum-mechanical particles moving on the three-dimensional lattice $\mathbb{Z}^3$ and interacting via zero-range attractive potentials is considered. The location of the essential and discrete spectra of the three-particle discrete Schrödinger operator $H(K)$, where $K$ is the three-particle quasimomentum, is studied. The absence of eigenvalues below the bottom of the essential spectrum of $H(K)$ for all sufficiently small values of the zero-range attractive potentials is established. The asymptotics $\lim_{z\to 0-}\frac{N(0,z)}{|\!\log|z||}=\mathcal{U}_0$ is found for the number of eigenvalues $N(0,z)$ lying below $z0$. Moreover, for all sufficiently small nonzero values of the three-particle quasimomentum $K$, the finiteness of the number $N(K,\tau_{\operatorname{ess}}(K))$ of eigenvalues below the essential spectrum of $H(K)$ is established and the asymptotics of the number $N(K,0)$ of eigenvalues of $H(K)$ below zero is given.
Keywords: three-particle discrete Schrödinger operator, three-particle system, Hamiltonian, zero-range attractive potential, virtual level, eigenvalue, Efimov effect, essential spectrum, asymptotics, lattice.
@article{FAA_2003_37_3_a7,
     author = {S. N. Lakaev and Z. I. Muminov},
     title = {The {Asymptotics} of the {Number} of {Eigenvalues} of a {Three-Particle} {Lattice} {Schr\"odinger} {Operator}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--84},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a7/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - Z. I. Muminov
TI  - The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr\"odinger Operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 80
EP  - 84
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a7/
LA  - ru
ID  - FAA_2003_37_3_a7
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A Z. I. Muminov
%T The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr\"odinger Operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 80-84
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a7/
%G ru
%F FAA_2003_37_3_a7
S. N. Lakaev; Z. I. Muminov. The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr\"odinger Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 80-84. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a7/

[1] Mattis D. C., “The few-body problem on a lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[2] Mogilner A. I., “Hamiltonians in solid-state physics as multiparticle discrete Schrödinger operators: problems and results”, Many-particle Hamiltonians: spectra and scattering, Adv. Soviet Math., 5, Amer. Math. Soc., Providence, RI, 1991, 139–194 | MR

[3] Lakaev S. N., “O beskonechnom chisle trekhchastichnykh svyazannykh sostoyanii sistemy trekh kvantovykh reshetchatykh chastits”, Teop. matem. fiz., 89:1 (1991), 94–104 | MR

[4] Lakaev S. N., “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego ppil., 27:3 (1993), 15–28 | MR | Zbl

[5] Yafaev D. R., “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94(136):4(8) (1974), 567–592

[6] Ovchinnikov Yu. N., Sigal I. M., Ann. Phys., 123 (1989), 274–295 | DOI | MR

[7] Sobolev A. V., “The Efimov effect. Discrete spectrum asymptotics”, Comm. Math. Phys., 156 (1993), 101–126 | DOI | MR | Zbl

[8] Tamura H., “Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect”, Spectral and scattering theory and applications, Adv. Stud. Pure Math., 23, Math. Soc. Japan, Tokyo, 1994, 311–322 | DOI | MR | Zbl

[9] Lakaev S. N., Abdullaev Zh. I., “Spektralnye svoistva raznostnogo trekhchastichnogo operatora Shrëdingera”, Funkts. analiz i ego pril., 33:2 (1999), 84–88 | DOI | MR | Zbl

[10] Albeverio S., Lakaev S. N., Abdullaev Zh. I., “Konechnost diskretnogo spektra chetyrekhchastichnogo operatora Shpëdingera na reshetke”, Funkts. analiz i ego pril., 36:3 (2002), 56–60 | DOI | MR | Zbl