The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr\"odinger Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 80-84
Voir la notice de l'article provenant de la source Math-Net.Ru
The Hamiltonian of a system of three quantum-mechanical particles moving on the three-dimensional lattice $\mathbb{Z}^3$ and interacting via zero-range attractive potentials is considered. The location of the essential and discrete spectra of the three-particle discrete Schrödinger operator $H(K)$, where $K$ is the three-particle quasimomentum, is studied. The absence of eigenvalues below the bottom of the essential spectrum of $H(K)$ for all sufficiently small values of the zero-range attractive potentials is established.
The asymptotics $\lim_{z\to 0-}\frac{N(0,z)}{|\!\log|z||}=\mathcal{U}_0$ is found for the number of eigenvalues $N(0,z)$ lying below $z0$. Moreover, for all sufficiently small nonzero values of the three-particle quasimomentum $K$, the finiteness of the number $N(K,\tau_{\operatorname{ess}}(K))$ of eigenvalues below the
essential spectrum of $H(K)$ is established and the asymptotics of the number $N(K,0)$ of eigenvalues of $H(K)$ below zero is given.
Keywords:
three-particle discrete Schrödinger operator, three-particle system, Hamiltonian, zero-range attractive potential, virtual level, eigenvalue, Efimov effect, essential spectrum, asymptotics, lattice.
@article{FAA_2003_37_3_a7,
author = {S. N. Lakaev and Z. I. Muminov},
title = {The {Asymptotics} of the {Number} of {Eigenvalues} of a {Three-Particle} {Lattice} {Schr\"odinger} {Operator}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {80--84},
publisher = {mathdoc},
volume = {37},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a7/}
}
TY - JOUR AU - S. N. Lakaev AU - Z. I. Muminov TI - The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr\"odinger Operator JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2003 SP - 80 EP - 84 VL - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a7/ LA - ru ID - FAA_2003_37_3_a7 ER -
%0 Journal Article %A S. N. Lakaev %A Z. I. Muminov %T The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr\"odinger Operator %J Funkcionalʹnyj analiz i ego priloženiâ %D 2003 %P 80-84 %V 37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a7/ %G ru %F FAA_2003_37_3_a7
S. N. Lakaev; Z. I. Muminov. The Asymptotics of the Number of Eigenvalues of a Three-Particle Lattice Schr\"odinger Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 80-84. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a7/