An Analytic Proof of the Nonintegrability of the ABC-flow for $A=B=C$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 77-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the absence of a real-analytic first integral in a known system describing the stationary flow of an ideal incompressible fluid with periodic boundary conditions and with velocity field collinear to the rotor of itself (an ABC-flow) for the case in which all three parameters occurring in the system are equal. A computer proof of this fact was previously known.
Keywords: ABC-flow, fundamental group.
Mots-clés : monodromy group
@article{FAA_2003_37_3_a6,
     author = {S. L. Ziglin},
     title = {An {Analytic} {Proof} of the {Nonintegrability} of the {ABC-flow} for $A=B=C$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {77--80},
     publisher = {mathdoc},
     volume = {37},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a6/}
}
TY  - JOUR
AU  - S. L. Ziglin
TI  - An Analytic Proof of the Nonintegrability of the ABC-flow for $A=B=C$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 77
EP  - 80
VL  - 37
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a6/
LA  - ru
ID  - FAA_2003_37_3_a6
ER  - 
%0 Journal Article
%A S. L. Ziglin
%T An Analytic Proof of the Nonintegrability of the ABC-flow for $A=B=C$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 77-80
%V 37
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a6/
%G ru
%F FAA_2003_37_3_a6
S. L. Ziglin. An Analytic Proof of the Nonintegrability of the ABC-flow for $A=B=C$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 3, pp. 77-80. http://geodesic.mathdoc.fr/item/FAA_2003_37_3_a6/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[2] Henon M., C. R. Acad. Sci. Paris, 262 (1966), 312–314

[3] Arnold V. I., Vestnik MGU, ser. matem., mekh., 1982, no. 6, 50–57 | MR

[4] Arnold V. I., Korkina E. I., Vestnik MGU, ser. matem., mekh., 1983, no. 3, 43–46

[5] Arnold V. I., “Ob evolyutsii magnitnogo polya pod deistviem perenosa i diffuzii”, Nekotorye voprosy sovremennogo analiza, Izd-vo MGU, 1984, 8–21 | MR

[6] Zaslavskii G. M., Sagdeev R. Z., Usikov U. A., Chernikov A. A., Slabyi khaos i kvaziregulyarnye struktury, Nauka, M., 1991 | MR | Zbl

[7] Ziglin S. L., “Rasscheplenie separatris i nesuschestvovanie pervykh integralov v sistemakh differentsialnykh uravnenii tipa gamiltonovykh s dvumya stepenyami svobody”, Izv. AN SSSR, ser. matem., 51:5 (1987), 1088–1103 | MR

[8] Ziglin S. L., “On the absence of a real-analytic first integral for ABC flow when $A=B$”, Chaos, 8:1 (1998), 272–273 | DOI | MR | Zbl

[9] Ziglin S. L., Cherepenin V. A., Dokl. RAN, 369:2 (1999), 173–174 | MR | Zbl

[10] Ziglin S. L., “O neintegriruemosti $ABC$-techeniya pri $A=B$”, Funkts. analiz i ego pril., 30:2 (1996), 80–81 | DOI | MR | Zbl

[11] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.-L., 1950 | MR

[12] Ziglin S. L., “Vetvlenie reshenii i nesuschestvovanie pervykh integralov v gamiltonovoi mekhanike, I”, Funkts. analiz i ego pril., 16:3 (1982), 30–41 | MR | Zbl

[13] Yoshida H., Ramani A., Grammaticos B, Hietarinta J., “On the nonintegrability of some generalized Toda lattices”, Phys. A, 144 (1987), 310–321 | DOI | MR | Zbl