On Functionals Bounded Below
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 75-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that the infimum of a functional with a lower bound is a critical value. The novelty is that we do not need the Palais–Smale type condition.
Keywords: lower boundedness, critical point, eigenvalue.
@article{FAA_2003_37_2_a7,
     author = {W. Zou and M. Schechter},
     title = {On {Functionals} {Bounded} {Below}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--80},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a7/}
}
TY  - JOUR
AU  - W. Zou
AU  - M. Schechter
TI  - On Functionals Bounded Below
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 75
EP  - 80
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a7/
LA  - ru
ID  - FAA_2003_37_2_a7
ER  - 
%0 Journal Article
%A W. Zou
%A M. Schechter
%T On Functionals Bounded Below
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 75-80
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a7/
%G ru
%F FAA_2003_37_2_a7
W. Zou; M. Schechter. On Functionals Bounded Below. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 75-80. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a7/

[1] Schechter M., Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999 | MR

[2] Chang K. C., Infinite-dimensional Morse theory and multiple solution problems, Birkhäuser, Boston, 1993 | MR

[3] Castro A., Cossio J., “Multiple solutions for a nonlinear Dirichlet problem”, SIAM J. Math. Anal., 25 (1994), 1554–1561 | DOI | MR | Zbl

[4] Jeanjean L., “On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on $\mathbb{RR}^N$”, Proc. Roy. Soc. Edinburgh A, 129 (1999), 787–809 | DOI | MR | Zbl