On Functionals Bounded Below
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 75-80
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we prove that the infimum of a functional with a lower bound is a critical value. The novelty is that we do not need the Palais–Smale type condition.
Keywords:
lower boundedness, critical point, eigenvalue.
@article{FAA_2003_37_2_a7,
author = {W. Zou and M. Schechter},
title = {On {Functionals} {Bounded} {Below}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {75--80},
year = {2003},
volume = {37},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a7/}
}
W. Zou; M. Schechter. On Functionals Bounded Below. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 75-80. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a7/
[1] Schechter M., Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999 | MR
[2] Chang K. C., Infinite-dimensional Morse theory and multiple solution problems, Birkhäuser, Boston, 1993 | MR
[3] Castro A., Cossio J., “Multiple solutions for a nonlinear Dirichlet problem”, SIAM J. Math. Anal., 25 (1994), 1554–1561 | DOI | MR | Zbl
[4] Jeanjean L., “On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on $\mathbb{RR}^N$”, Proc. Roy. Soc. Edinburgh A, 129 (1999), 787–809 | DOI | MR | Zbl