On the Monodromy of a Multivalued Function Along Its Ramification Locus
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider multivalued analytic functions in $\mathbb{C}^n$ whose set of singular points occupies a very small part of $\mathbb{C}^n$. Under a mapping of a topological space $Y$ into $\mathbb{C}^n$, such a function $f$ can induce a multivalued function on $Y$. This is possible even if the image of $Y$ entirely lies in the ramification set of $f$. We estimate the monodromy group of the induced function via the monodromy group of $f$.
Keywords: multivalued function, Galois theory.
Mots-clés : monodromy group
@article{FAA_2003_37_2_a6,
     author = {A. G. Khovanskii},
     title = {On the {Monodromy} of a {Multivalued} {Function} {Along} {Its} {Ramification} {Locus}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a6/}
}
TY  - JOUR
AU  - A. G. Khovanskii
TI  - On the Monodromy of a Multivalued Function Along Its Ramification Locus
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 65
EP  - 74
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a6/
LA  - ru
ID  - FAA_2003_37_2_a6
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%T On the Monodromy of a Multivalued Function Along Its Ramification Locus
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 65-74
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a6/
%G ru
%F FAA_2003_37_2_a6
A. G. Khovanskii. On the Monodromy of a Multivalued Function Along Its Ramification Locus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 65-74. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a6/

[1] Khovanskii A., “O predstavimosti funktsii v kvadraturakh”, UMN, 26:4 (1971), 251–252 | MR

[2] Khovanskii A., O predstavimosti funktsii v kvadraturakh, Diss. k.f.-m.n., MIAN, M., 1973

[3] Khovanskii A., “Topological obstructions for representability of functions by quadratures”, J. Dynamical and Control Systems, 1:1 (1995), 99–132 | DOI | MR

[4] Khovanskii A., “O prodolzhaemosti mnogoznachnykh analiticheskikh funktsii na analiticheskoe podmnozhestvo”, Funkts. analiz i ego pril., 35:1 (2001), 62–73 | DOI | MR | Zbl

[5] Khovanskii A., “A multi-dimensional topological version of Galois theory”, Monodromy in Geometry and Differential Equations, Proceeding of International Conference (25–30 June, Moscow, 2001)

[6] Khovanskii A., “O superpozitsiyakh golomorfnykh funktsii s radikalami”, UMN, 26:2 (1971), 213–214 | Zbl

[7] Alekseev V. B., Teorema Abelya v zadachakh i resheniyakh, MTsNMO, M., 2001 | MR

[8] Arnold V. I., Petrovskii I. G., “Topologicheskie problemy Gilberta i sovremennaya matematika”, UMN, 57:4 (2002), 197–207 | DOI | MR