On the Monodromy of a Multivalued Function Along Its Ramification Locus
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 65-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider multivalued analytic functions in $\mathbb{C}^n$ whose set of singular points occupies a very small part of $\mathbb{C}^n$. Under a mapping of a topological space $Y$ into $\mathbb{C}^n$, such a function $f$ can induce a multivalued function on $Y$. This is possible even if the image of $Y$ entirely lies in the ramification set of $f$. We estimate the monodromy group of the induced function via the monodromy group of $f$.
Keywords: multivalued function, Galois theory.
Mots-clés : monodromy group
@article{FAA_2003_37_2_a6,
     author = {A. G. Khovanskii},
     title = {On the {Monodromy} of a {Multivalued} {Function} {Along} {Its} {Ramification} {Locus}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a6/}
}
TY  - JOUR
AU  - A. G. Khovanskii
TI  - On the Monodromy of a Multivalued Function Along Its Ramification Locus
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 65
EP  - 74
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a6/
LA  - ru
ID  - FAA_2003_37_2_a6
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%T On the Monodromy of a Multivalued Function Along Its Ramification Locus
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 65-74
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a6/
%G ru
%F FAA_2003_37_2_a6
A. G. Khovanskii. On the Monodromy of a Multivalued Function Along Its Ramification Locus. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 65-74. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a6/