Preduals of von Neumann Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 92-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Proofs of two assertions are sketched. 1) If the Banach space of a von Neumann algebra $\mathfrak A$ is the third dual of some Banach space, then the space $\mathfrak A$ is isometrically isomorphic to the second dual of some von Neumann algebra $A$ and the von Neumann algebra $A$ is uniquely determined by its enveloping von Neumann algebra (up to von Neumann algebra isomorphism) and is the unique second predual of $\mathfrak A$ (up to isometric isomorphism of Banach spaces). 2) An infinite-dimensional von Neumann algebra cannot have preduals of all orders.
Keywords: von Neumann algebra, Banach space, dual, predual.
@article{FAA_2003_37_2_a10,
     author = {A. I. Shtern},
     title = {Preduals of von {Neumann} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {92--94},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a10/}
}
TY  - JOUR
AU  - A. I. Shtern
TI  - Preduals of von Neumann Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 92
EP  - 94
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a10/
LA  - ru
ID  - FAA_2003_37_2_a10
ER  - 
%0 Journal Article
%A A. I. Shtern
%T Preduals of von Neumann Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 92-94
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a10/
%G ru
%F FAA_2003_37_2_a10
A. I. Shtern. Preduals of von Neumann Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 92-94. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a10/

[1] Dixmier J., “Sur un théorème de Banach”, Duke Math. J., 15 (1948), 1057–1071 | DOI | MR | Zbl