Weakly Outer Inner Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 7-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inner function $I$ in the unit ball $B_n\subset\mathbb{РЎ}^n$ is said to be weakly outer if the closed subspace $IH^p(B_n)$ is weakly dense in the Hardy space $H^p(B_n)$, $0$. We construct weakly outer inner functions in the ball $B_n$ for all $n\ge 1$. We also investigate inner functions $I$ such that the subspace $I H^p(B_n)$ is not weakly dense in $H^p(B_n)$.
Keywords: Hardy class, pluriharmonic measure.
@article{FAA_2003_37_2_a1,
     author = {E. Doubtsov},
     title = {Weakly {Outer} {Inner} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a1/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Weakly Outer Inner Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 7
EP  - 15
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a1/
LA  - ru
ID  - FAA_2003_37_2_a1
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Weakly Outer Inner Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 7-15
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a1/
%G ru
%F FAA_2003_37_2_a1
E. Doubtsov. Weakly Outer Inner Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 7-15. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a1/

[1] Duren P. L., Romberg B. W., Shields A. L., “Linear functionals on $H^p$ spaces with $0

1$”, J. Reine Angew. Math., 238 (1969), 32–60 | MR | Zbl

[2] Roberts J. W., “Cyclic inner functions in the Bergman spaces and weak outer functions in $H^p$ ($0

1$)”, Ill. J. Math., 29 (1985), 25–38 | MR | Zbl

[3] Doubtsov E., “An inner function which is not weak outer”, C. R. Acad. Sci. Paris, Sér. I, 334 (2002), 957–960 | DOI | MR | Zbl

[4] Aleksandrov A. B., “Teoriya funktsii v share”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 8, VINITI, M., 1985, 115–190

[5] Shapiro J. H., “Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces”, Duke Math. J., 43:1 (1976), 187–202 | DOI | MR | Zbl

[6] Rudin U., Teoriya funktsii v edinichnom share iz $\mathrm{CC}^n$, Mir, M., 1984 | MR | Zbl

[7] Shapiro J. H., “Remarks on $F$-spaces of analytic functions”, Lect. Notes in Math., 604, Springer-Verlag, Berlin, 1977, 107–124 | DOI | MR

[8] Shapiro H. S., “Weakly invertible elements in certain function spaces, and generators in $\mathrm{ell}^1$”, Michigan Math. J., 11 (1964), 161–165 | DOI | MR | Zbl

[9] Doubtsov E., “Little Bloch functions, symmetric pluriharmonic measures and Zygmund's dichotomy”, J. Funct. Anal., 170:2 (2000), 286–306 | DOI | MR | Zbl

[10] Duren P. L., “Smoothness of functions generated by Riesz products”, Proc. Amer. Math. Soc., 16:6 (1965), 1263–1268 | DOI | MR | Zbl

[11] Shapiro G., “Nekotorye zamechaniya o vesovoi polinomialnoi approksimatsii golomorfnykh funktsii.”, Matem. sb., 73(115):3 (1967), 320–330 | MR | Zbl

[12] Zhu K., Operator Theory in Function Spaces, Marcel Dekker, New York, 1990 | MR | Zbl