Central Elements of the Elliptic Yang–Baxter Algebra at Roots of Unity
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 1-6
Cet article a éte moissonné depuis la source Math-Net.Ru
We give central elements of the Yang–Baxter algebra for the $R$-matrix of the eight-vertex model for the case in which the crossing parameter is a rational multiple of one of the periods.
Keywords:
eight-vertex model, Yang–Baxter algebra, center, Baxter intertwining vector.
Mots-clés : $R$-matrix
Mots-clés : $R$-matrix
@article{FAA_2003_37_2_a0,
author = {A. A. Belavin and M. Jimbo},
title = {Central {Elements} of the {Elliptic} {Yang{\textendash}Baxter} {Algebra} at {Roots} of {Unity}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--6},
year = {2003},
volume = {37},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a0/}
}
A. A. Belavin; M. Jimbo. Central Elements of the Elliptic Yang–Baxter Algebra at Roots of Unity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 2, pp. 1-6. http://geodesic.mathdoc.fr/item/FAA_2003_37_2_a0/
[1] Bakster P., Tochno reshaemye modeli statisticheskoi fiziki, Mir, M., 1985 | MR
[2] Tarasov V., “Cyclic monodromy matrices for the $R$-matrix of the six-vertex model and the chiral Potts model with fixed boundary conditions”, Int. J. Mod. Phys. A, 7 (1992), 963–975, Suppl. 1B | DOI | MR | Zbl
[3] Date E., Jimbo M., Kuniba A., Miwa T., Okado M., “Exactly solvable SOS models II: Proof of the star-traingle relation and combinatorial identities”, Adv. Stud. Pure Math., 16 (1988), 17–122 | DOI | MR | Zbl