Irreducibility Criterion for Quasiregular Representations of the Group of Finite Upper Triangular Matrices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of the quasiregular representation is defined for the group of infinite-order finite upper triangular matrices. It uses $G$-quasi-invariant measures on some $G$-spaces. The criterion for the irreducibility and equivalence of the constructed representations is given. This criterion allows us to generalize Ismagilov's conjecture on the irreducibility of an analog of regular representations of infinite-dimensional groups.
Mots-clés : Ismagilov's conjecture
Keywords: quasiregular representation, infinite-dimensional group.
@article{FAA_2003_37_1_a6,
     author = {A. V. Kosyak},
     title = {Irreducibility {Criterion} for {Quasiregular} {Representations} of the {Group} of {Finite} {Upper} {Triangular} {Matrices}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {78--81},
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a6/}
}
TY  - JOUR
AU  - A. V. Kosyak
TI  - Irreducibility Criterion for Quasiregular Representations of the Group of Finite Upper Triangular Matrices
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 78
EP  - 81
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a6/
LA  - ru
ID  - FAA_2003_37_1_a6
ER  - 
%0 Journal Article
%A A. V. Kosyak
%T Irreducibility Criterion for Quasiregular Representations of the Group of Finite Upper Triangular Matrices
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 78-81
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a6/
%G ru
%F FAA_2003_37_1_a6
A. V. Kosyak. Irreducibility Criterion for Quasiregular Representations of the Group of Finite Upper Triangular Matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 78-81. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a6/

[1] Kosyak A. V., “Kriterii neprivodimosti regulyarnykh gaussovskikh predstavlenii gruppy finitnykh verkhnetreugolnykh matrits”, Funkts. analiz i ego pril., 24:3 (1990), 82–83 | MR | Zbl

[2] Kosyak A. V., “Criteria for irreducibility and equivalence of regular Gaussian representations of groups of finite”, Selecta Math. Soviet., 11 (1992), 241–291 | MR | Zbl

[3] Kosyak A. V., “Regular representations of the group of finite upper-triangular matrices, corresponding to product measures, and criteria for their irreducibility”, Methods of Funct. Anal. Topology, 6:4 (2000), 43–55 | MR | Zbl

[4] Kosyak A. V., “Irreducible regular Gaussian representations of the groups of the interval and circle diffeomorphisms”, J. Funct. Anal., 125 (1994), 493–547 | DOI | MR | Zbl

[5] Albeverio S., Hoegh-Krohn R., “The energy representation of Sobolev-Lie groups”, Composito Math., 36:1 (1978), 37–51 | MR | Zbl

[6] Ismagilov R. S., “O predstavleniyakh gruppy gladkikh otobrazhenii otrezka v kompaktnuyu gruppu Li”, Funkts. analiz i ego pril., 15:2 (1981), 73–74 | MR | Zbl

[7] Albeverio S., Hoegh-Krohn R., Testard D., “Irreducibility and reducibility for the energy representation of the group of mappings of a Riemannian manifold into a compact semisimple Lie group”, J. Funct. Anal., 41 (1981), 378–396 | DOI | MR | Zbl

[8] Albeverio S., Hoegh-Krohn R., Testard D., Vershik A., “Factorial representations of path groups”, J. Funct. Anal., 51 (1983), 115–131 | DOI | MR | Zbl

[9] Dixmier J., Les algèbres d'operateurs dans l'espace hilbertien, $2^\text{e}$ édition, Gauthier-Villars, Paris, 1969 | MR

[10] Kosyak A. V., “Elementary representations of the group $B^0_{\mathbb Z}$ of infinite in both directions upper-triangular matrices, I”, Ukr. Math. J., 54:2 (2002), 205–215 | DOI | MR | Zbl

[11] Kosyak A. V., “The generalized Ismagilov conjecture for the group $B^0_{\mathbb N}$, I”, Methods Funct. Anal. Topology, 8:2 (2002), 33–49 | MR | Zbl