Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2003_37_1_a6, author = {A. V. Kosyak}, title = {Irreducibility {Criterion} for {Quasiregular} {Representations} of the {Group} of {Finite} {Upper} {Triangular} {Matrices}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {78--81}, publisher = {mathdoc}, volume = {37}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a6/} }
TY - JOUR AU - A. V. Kosyak TI - Irreducibility Criterion for Quasiregular Representations of the Group of Finite Upper Triangular Matrices JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2003 SP - 78 EP - 81 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a6/ LA - ru ID - FAA_2003_37_1_a6 ER -
%0 Journal Article %A A. V. Kosyak %T Irreducibility Criterion for Quasiregular Representations of the Group of Finite Upper Triangular Matrices %J Funkcionalʹnyj analiz i ego priloženiâ %D 2003 %P 78-81 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a6/ %G ru %F FAA_2003_37_1_a6
A. V. Kosyak. Irreducibility Criterion for Quasiregular Representations of the Group of Finite Upper Triangular Matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 78-81. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a6/
[1] Kosyak A. V., “Kriterii neprivodimosti regulyarnykh gaussovskikh predstavlenii gruppy finitnykh verkhnetreugolnykh matrits”, Funkts. analiz i ego pril., 24:3 (1990), 82–83 | MR | Zbl
[2] Kosyak A. V., “Criteria for irreducibility and equivalence of regular Gaussian representations of groups of finite”, Selecta Math. Soviet., 11 (1992), 241–291 | MR | Zbl
[3] Kosyak A. V., “Regular representations of the group of finite upper-triangular matrices, corresponding to product measures, and criteria for their irreducibility”, Methods of Funct. Anal. Topology, 6:4 (2000), 43–55 | MR | Zbl
[4] Kosyak A. V., “Irreducible regular Gaussian representations of the groups of the interval and circle diffeomorphisms”, J. Funct. Anal., 125 (1994), 493–547 | DOI | MR | Zbl
[5] Albeverio S., Hoegh-Krohn R., “The energy representation of Sobolev-Lie groups”, Composito Math., 36:1 (1978), 37–51 | MR | Zbl
[6] Ismagilov R. S., “O predstavleniyakh gruppy gladkikh otobrazhenii otrezka v kompaktnuyu gruppu Li”, Funkts. analiz i ego pril., 15:2 (1981), 73–74 | MR | Zbl
[7] Albeverio S., Hoegh-Krohn R., Testard D., “Irreducibility and reducibility for the energy representation of the group of mappings of a Riemannian manifold into a compact semisimple Lie group”, J. Funct. Anal., 41 (1981), 378–396 | DOI | MR | Zbl
[8] Albeverio S., Hoegh-Krohn R., Testard D., Vershik A., “Factorial representations of path groups”, J. Funct. Anal., 51 (1983), 115–131 | DOI | MR | Zbl
[9] Dixmier J., Les algèbres d'operateurs dans l'espace hilbertien, $2^\text{e}$ édition, Gauthier-Villars, Paris, 1969 | MR
[10] Kosyak A. V., “Elementary representations of the group $B^0_{\mathbb Z}$ of infinite in both directions upper-triangular matrices, I”, Ukr. Math. J., 54:2 (2002), 205–215 | DOI | MR | Zbl
[11] Kosyak A. V., “The generalized Ismagilov conjecture for the group $B^0_{\mathbb N}$, I”, Methods Funct. Anal. Topology, 8:2 (2002), 33–49 | MR | Zbl