Polynomial Hurwitz Numbers and Intersections on $\overline{\mathcal{M}}_{0,k}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 92-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We express Hurwitz numbers of polynomials of arbitrary topological type in terms of intersection numbers on the moduli space of curves of genus zero with marked points.
Keywords: Hurwitz numbers, polynomials, moduli space of curves, intersection numbers.
@article{FAA_2003_37_1_a10,
     author = {S. V. Shadrin},
     title = {Polynomial {Hurwitz} {Numbers} and {Intersections} on $\overline{\mathcal{M}}_{0,k}$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {92--94},
     year = {2003},
     volume = {37},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a10/}
}
TY  - JOUR
AU  - S. V. Shadrin
TI  - Polynomial Hurwitz Numbers and Intersections on $\overline{\mathcal{M}}_{0,k}$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2003
SP  - 92
EP  - 94
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a10/
LA  - ru
ID  - FAA_2003_37_1_a10
ER  - 
%0 Journal Article
%A S. V. Shadrin
%T Polynomial Hurwitz Numbers and Intersections on $\overline{\mathcal{M}}_{0,k}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2003
%P 92-94
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a10/
%G ru
%F FAA_2003_37_1_a10
S. V. Shadrin. Polynomial Hurwitz Numbers and Intersections on $\overline{\mathcal{M}}_{0,k}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 92-94. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a10/

[1] Ekedahl T., Lando S., Shapiro M., Vainshtein A., “Hurwitz numbers and intersections on moduli spaces of curves”, Invent. Math., 146 (2001), 297–327 | DOI | MR | Zbl

[2] Harris J., Mumford D., “On the Kodaira dimension of the moduli space of curves”, Invent. Math., 67 (1982), 23–86 | DOI | MR | Zbl

[3] Ionel E., “Topological recursive relations in $H_{2g}(\mathscr M^{g,n})$”, Invent. Math., 148:3 (2002), 627–658 | DOI | MR | Zbl

[4] Keel S., “Intersection theory of moduli space of stable $n$-pointed curves of genus”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574 | DOI | MR | Zbl

[5] Lando S. K., Zvonkin D. A., “O kratnostyakh otobrazheniya Lyashko–Loiengi na stratakh diskriminanta”, Funkts. analiz i ego pril., 33:3 (1999), 21–34 | DOI | MR | Zbl

[6] Okounkov A., Pandharipande R., arXiv: /math.AG/0101147

[7] Shadrin S. V., arXiv: /math.AG/0209282