Fermat--Euler Dynamical Systems and the Statistics of Arithmetics of Geometric Progressions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 1-18
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $n$ be an integer. A Fermat–Euler dynamical system acts on the set of mod-$n$ residues coprime to $n$ by multiplication by a constant (which is also coprime to $n$). We study the dependence of the period and the number of orbits of this dynamical system on $n$. Theorems generalizing Fermat's little theorem, as well as empirical conjectures, are given.
Keywords:
Euler function, Fermat's little theorem, chaotic behavior, weak asymptotics, quadratic residue, geometric progression, Young diagram.
@article{FAA_2003_37_1_a0,
author = {V. I. Arnol'd},
title = {Fermat--Euler {Dynamical} {Systems} and the {Statistics} of {Arithmetics} of {Geometric} {Progressions}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--18},
publisher = {mathdoc},
volume = {37},
number = {1},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a0/}
}
TY - JOUR AU - V. I. Arnol'd TI - Fermat--Euler Dynamical Systems and the Statistics of Arithmetics of Geometric Progressions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2003 SP - 1 EP - 18 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a0/ LA - ru ID - FAA_2003_37_1_a0 ER -
V. I. Arnol'd. Fermat--Euler Dynamical Systems and the Statistics of Arithmetics of Geometric Progressions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a0/