Fermat–Euler Dynamical Systems and the Statistics of Arithmetics of Geometric Progressions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 1-18
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $n$ be an integer. A Fermat–Euler dynamical system acts on the set of mod-$n$ residues coprime to $n$ by multiplication by a constant (which is also coprime to $n$). We study the dependence of the period and the number of orbits of this dynamical system on $n$. Theorems generalizing Fermat's little theorem, as well as empirical conjectures, are given.
Keywords:
Euler function, Fermat's little theorem, chaotic behavior, weak asymptotics, quadratic residue, geometric progression, Young diagram.
@article{FAA_2003_37_1_a0,
author = {V. I. Arnol'd},
title = {Fermat{\textendash}Euler {Dynamical} {Systems} and the {Statistics} of {Arithmetics} of {Geometric} {Progressions}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--18},
year = {2003},
volume = {37},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a0/}
}
V. I. Arnol'd. Fermat–Euler Dynamical Systems and the Statistics of Arithmetics of Geometric Progressions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 37 (2003) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/FAA_2003_37_1_a0/
[1] Arnold V. I., Arithmetics of binary quadratic forms, symmetry of their continued fractions and geometry of their de Sitter world, MCCME, Moscow, Dubna, 2002, 40 pp.; Bull. of Braz. Math. Soc., 34:1 (2003), 1–42 | DOI | MR
[2] Arnold V. I., “Slabye asimptotiki chisla razlozhenii diofantovykh zadach”, Funkts. analiz i ego pril., 33:4 (1999), 65–66 | DOI | MR
[3] Arnold I. V., Teoriya chisel, Uchpedgiz, 1933
[4] Venkov B. A., Elementarnaya teoriya chisel, ONTI NKTP, 1937
[5] Arnold V. I., Gruppy Eilera i arifmetika geometricheskikh progressii, MTsNMO, 2003
[6] Arnold V., “Ergodic and arithmetical properties of geometrical progression's dynamics and of its orbits”, Moscow Mathematical Journal, 5:1 (2005), 5–22 | DOI | MR