Normal Decompositions of Operator Spaces over Locally Convex Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 78-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The normal decomposition of operator spaces into inductive scales of locally convex spaces in accordance with the classification of operators by their normal indices is considered. The canonical isomorphisms of operator spaces over Banach space are generalized to operators in locally convex spaces.
Keywords: locally convex space, inductive scale of spaces, normal index, operator space, canonical isomorphism.
@article{FAA_2002_36_4_a8,
     author = {I. V. Orlov},
     title = {Normal {Decompositions} of {Operator} {Spaces} over {Locally} {Convex} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {78--80},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a8/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Normal Decompositions of Operator Spaces over Locally Convex Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 78
EP  - 80
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a8/
LA  - ru
ID  - FAA_2002_36_4_a8
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Normal Decompositions of Operator Spaces over Locally Convex Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 78-80
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a8/
%G ru
%F FAA_2002_36_4_a8
I. V. Orlov. Normal Decompositions of Operator Spaces over Locally Convex Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 78-80. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a8/

[1] Orlov I. V., “A termwise differentiation in the inductive scales of the locally convex spaces”, Operator theory and related topics, Vol. II (Odessa, 1997), Oper. Theory Adv. Appl., 118, Birkhäuser, Basel, 2000, 321–333 | MR | Zbl

[2] Orlov I. V., “Banach-Grothendieck theorem for the scales of spaces”, Spectral and Evolution Problems, Vol. 10, Normal functional indices and normal duality, Natl. Taurida Univ. “V. Vernadsky”, Simferopol, 2000, 35–39 | MR

[3] Orlov I. V., Dinamicheskie sistemy, 16 (2000), 165–171 | Zbl

[4] Orlov I. V., “Normal functional indices and normal duality”, Methods of Functional Analysis and Topology, 8:3 (2002), 61–71 | MR | Zbl

[5] Orlov I. V., Spectral and Evolution Problems, Vol. 11, Proc. of the Eleventh Crimean Autumn Math. School, Natl. Taurida Univ. “V. Vernadsky”, Simferopol, 2001, 18–29 | MR

[6] Volevich L. R., Gindikin S. G., Obobschennye funktsii i uravneniya v svertkakh, Nauka, M., 1994 | MR | Zbl

[7] Köthe G., Topologishe lineare Räume, Springer-Verlag, Berlin, 1960 | MR | Zbl

[8] Balabanov V. A., Nekotorye voprosy nelineinogo funktsionalnogo analiza i ikh prilozheniya, Metsniereba, Tbilisi, 1982

[9] Sukhinin M. F., Izbrannye glavy nelineinogo analiza, Izd-vo Ross. un-ta druzhby narodov, M., 1992

[10] Zgurovskii M. Z., Melnik V. S., Nelineinyi analiz i upravlenie beskonechnomernymi sistemami, Naukova dumka, Kiev, 1999