Invariant Subspaces of Operator Lie Algebras and the Theory of $K$-Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 88-91
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a Lie algebra of compact operators contains a nonzero ideal consisting of quasinilpotent operators then this Lie algebra has a nontrivial invariant subspace. Some applications of this result to lattices of
invariant subspaces for families of compact operators and to structures of ideals of Banach Lie algebras with compact adjoint action are given.
Keywords:
Banach Lie algebra, invariant subspace, operator on a Banach space, Volterra operator, Engel ideal.
Mots-clés : solvable Lie algebra
Mots-clés : solvable Lie algebra
@article{FAA_2002_36_4_a11,
author = {Yu. V. Turovskii and V. S. Shulman},
title = {Invariant {Subspaces} of {Operator} {Lie} {Algebras} and the {Theory} of $K${-Algebras}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {88--91},
publisher = {mathdoc},
volume = {36},
number = {4},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a11/}
}
TY - JOUR AU - Yu. V. Turovskii AU - V. S. Shulman TI - Invariant Subspaces of Operator Lie Algebras and the Theory of $K$-Algebras JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2002 SP - 88 EP - 91 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a11/ LA - ru ID - FAA_2002_36_4_a11 ER -
Yu. V. Turovskii; V. S. Shulman. Invariant Subspaces of Operator Lie Algebras and the Theory of $K$-Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a11/