Invariant Subspaces of Operator Lie Algebras and the Theory of $K$-Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 88-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a Lie algebra of compact operators contains a nonzero ideal consisting of quasinilpotent operators then this Lie algebra has a nontrivial invariant subspace. Some applications of this result to lattices of invariant subspaces for families of compact operators and to structures of ideals of Banach Lie algebras with compact adjoint action are given.
Keywords: Banach Lie algebra, invariant subspace, operator on a Banach space, Volterra operator, Engel ideal.
Mots-clés : solvable Lie algebra
@article{FAA_2002_36_4_a11,
     author = {Yu. V. Turovskii and V. S. Shulman},
     title = {Invariant {Subspaces} of {Operator} {Lie} {Algebras} and the {Theory} of $K${-Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--91},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a11/}
}
TY  - JOUR
AU  - Yu. V. Turovskii
AU  - V. S. Shulman
TI  - Invariant Subspaces of Operator Lie Algebras and the Theory of $K$-Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 88
EP  - 91
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a11/
LA  - ru
ID  - FAA_2002_36_4_a11
ER  - 
%0 Journal Article
%A Yu. V. Turovskii
%A V. S. Shulman
%T Invariant Subspaces of Operator Lie Algebras and the Theory of $K$-Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 88-91
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a11/
%G ru
%F FAA_2002_36_4_a11
Yu. V. Turovskii; V. S. Shulman. Invariant Subspaces of Operator Lie Algebras and the Theory of $K$-Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a11/

[1] Aronszajn N. A., Smith K. T., “Invariant subspaces of completely continuous operators”, Ann. Math., 60 (1954), 345–350 | DOI | MR | Zbl

[2] Lomonosov V. I., “Ob invariantnykh podprostranstvakh semeistva operatorov, kommutiruyuschikh s vpolne nepreryvnym”, Funkts. analiz i ego pril., 7:3 (1973), 55–57 | MR

[3] Shulman V. S., Turovskii Yu. V., “Joint spectral radius, operator semigroups, and a problem of W. Wojtyński”, J. Funct. Anal., 177 (2000), 383–441 | DOI | MR | Zbl

[4] Shulman V. S., Turovskii Yu. V., “Solvable Lie algebras of compact operators have invariant subspaces”, Spectral and Evolutionary Problems, 9, Simferopol State Univ., Simferopol, 1999, 38–44 | MR

[5] Vaksman L. L., Gurarii D. L., Teoriya funktsii, funkts. analiz i ego pril., 24 (1975), 16–32 | MR

[6] Wojtynski W., “Banach-Lie algebras of compact operators”, Stud. Math., 59:3 (1977), 263–273 | DOI | MR | Zbl

[7] Wojtynski W., “A note on compact Banach-Lie algebras of Volterra type”, Bull. Acad. Polon. Sci., Ser. Math., 26:2 (1978), 105–107 | MR | Zbl