Elliptic Families of Solutions of the Kadomtsev--Petviashvili Equation and the Field Elliptic Calogero--Moser System
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a Lax pair for the field elliptic Calogero–Moser system and establish a connection between this system and the Kadomtsev–Petviashvili equation. Namely, we consider elliptic families of solutions of the KP equation such that their poles satisfy a constraint of being balanced. We show that the dynamics of these poles is described by a reduction of the field elliptic CM system. We construct a wide class of solutions to the field elliptic CM system by showing that any $N$-fold branched cover of an elliptic curve gives rise to an elliptic family of solutions of the KP equation with balanced poles.
Mots-clés : KP equation, Calogero–Moser system, Lax pair.
@article{FAA_2002_36_4_a0,
     author = {A. A. Akhmetshin and Yu. S. Vol'vovskii and I. M. Krichever},
     title = {Elliptic {Families} of {Solutions} of the {Kadomtsev--Petviashvili} {Equation} and the {Field} {Elliptic} {Calogero--Moser} {System}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a0/}
}
TY  - JOUR
AU  - A. A. Akhmetshin
AU  - Yu. S. Vol'vovskii
AU  - I. M. Krichever
TI  - Elliptic Families of Solutions of the Kadomtsev--Petviashvili Equation and the Field Elliptic Calogero--Moser System
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 1
EP  - 17
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a0/
LA  - ru
ID  - FAA_2002_36_4_a0
ER  - 
%0 Journal Article
%A A. A. Akhmetshin
%A Yu. S. Vol'vovskii
%A I. M. Krichever
%T Elliptic Families of Solutions of the Kadomtsev--Petviashvili Equation and the Field Elliptic Calogero--Moser System
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 1-17
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a0/
%G ru
%F FAA_2002_36_4_a0
A. A. Akhmetshin; Yu. S. Vol'vovskii; I. M. Krichever. Elliptic Families of Solutions of the Kadomtsev--Petviashvili Equation and the Field Elliptic Calogero--Moser System. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 4, pp. 1-17. http://geodesic.mathdoc.fr/item/FAA_2002_36_4_a0/

[1] Airault H., McKean H., Moser J., “Rational and elliptic solutions of the Korteweg–de Vries equation and related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR | Zbl

[2] Babelon O., Billey E., Krichever I., Talon M., “Spin generalisation of the Calogero–Moser system and the matrix KP equation”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl., Ser. 2, 170, Amer. Math. Soc., Providence, 1995, 83–119 | MR | Zbl

[3] Bateman H., Erdelyi A., Higher transcendental functions, Vol. II, McGraw-Hill, 1953 | MR

[4] Calogero F., “Exactly solvable one-dimensional many-body systems”, Lett. Nuovo Cimento (2), 13:11 (1975), 411–416 | DOI | MR

[5] Krichever I. M., “Algebro-geometricheskoe postroenie uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, DAN, 227:2 (1976), 291–294 | MR | Zbl

[6] Krichever I. M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[7] Krichever I. M., “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:1 (1980), 45–54 | MR | Zbl

[8] Krichever I., “Elliptic solutions to difference non-linear equations and nested Bethe ansatz equations”, Calogero–Moser–Sutherland models (Montreal, QC, 1997)), CRM Ser. Math. Phys., Springer-Verlag, New York, 2000, 249–271 | MR

[9] Krichever I., “Elliptic analog of the Toda lattice”, Internat. Math. Res. Notices, 8 (2000), 383–412 | DOI | MR | Zbl

[10] Krichever I., Vector bundles and Lax equations on algebraic curves, , 2001 arXiv: /hep-th/0108110 | MR

[11] Krichever I., Lipan O., Wiegmann P., Zabrodin A., “Quantum integrable models and discrete classical Hirota equations”, Comm. Math. Phys., 188:2 (1997), 267–304 | DOI | MR | Zbl

[12] Zabrodin A. V., Krichever I. M., “Spinovoe obobschenie modeli Reisenaarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Toda i predstavleniya algebr Sklyanina”, UMN, 50:6 (1995), 3–56 | MR | Zbl

[13] Levin A., Olshanetsky M., Zotov A., Hitchin Systems – symplectic maps and two-dimensional version, , 2001 arXiv: /nlin.SI/0110045 | MR

[14] Gorsky A., Nekrasov N., Elliptic Calogero–Moser system from two-dimensional current algebra, arXiv: /hep-th/9401021

[15] Nekrasov N., “Holomorphic bundles and many-body systems”, Comm. Math. Phys., 180:3 (1996), 587–603 | DOI | MR | Zbl

[16] Perelomov A. M., Vpolne integriruemye klassicheskie sistemy, svyazannye s poluprostymi algebrami Li, Nauka, M., 1990 | Zbl

[17] Markman E., “Spectral curves and integrable systems”, Compositio Math., 93 (1994), 255–290 | MR | Zbl