On a Model Problem for the Orr–Sommerfeld Equation with Linear Profile
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 71-75
Cet article a éte moissonné depuis la source Math-Net.Ru
A model spectral problem of the form $-i\varepsilon y''+xy=\lambda y$ on the finite interval $[-1,1]$ with the Dirichlet boundary conditions is considered. Here $\lambda$ is the spectral parameter and $\varepsilon$ is positive. The behavior of the spectrum of this problem as $\varepsilon\to 0$ is completely investigated. The limit curves are found to which the eigenvalues concentrate and the counting eigenvalue functions along these curves are obtained.
Keywords:
the Airy function
Mots-clés : Couette flow, quasiclassical eigenvalue formulas.
Mots-clés : Couette flow, quasiclassical eigenvalue formulas.
@article{FAA_2002_36_3_a9,
author = {A. V. D'yachenko and A. A. Shkalikov},
title = {On a {Model} {Problem} for the {Orr{\textendash}Sommerfeld} {Equation} with {Linear} {Profile}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {71--75},
year = {2002},
volume = {36},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a9/}
}
TY - JOUR AU - A. V. D'yachenko AU - A. A. Shkalikov TI - On a Model Problem for the Orr–Sommerfeld Equation with Linear Profile JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2002 SP - 71 EP - 75 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a9/ LA - ru ID - FAA_2002_36_3_a9 ER -
A. V. D'yachenko; A. A. Shkalikov. On a Model Problem for the Orr–Sommerfeld Equation with Linear Profile. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 71-75. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a9/
[1] Morawetz C. S., “The eigenvalues of some stability problems involving viscosity”, J. Rat. Mech. Anal., 1 (1952), 579–603 | MR | Zbl
[2] Drazin R. G., Reid W. H., Hydrodynamic Stability, Cambridge, 1981 | MR
[3] Shkalikov A. A., “O predelnom povedenii spektra pri bolshikh znacheniyakh parametra odnoi modelnoi zadachi”, Matem. zametki, 62:6 (1997), 950–953 | DOI | MR | Zbl
[4] Olver F. W., Asymptotic and special functions, Academic Press, New York, 1974 | MR