On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schr\"odinger Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 56-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hamiltonian describing four bosons that move on a lattice and interact by means of pair zero-range attractive potentials is considered. A stronger version of the Hunziker–Van Vinter–Zhislin theorem on the essential spectrum is established. It is proved that the set of eigenvalues lying to the left of the essential spectrum is finite for any interaction energy of two bosons and is empty if this energy is sufficiently small.
Keywords: Schrödinger equation, Faddeev integral equation.
Mots-clés : boson
@article{FAA_2002_36_3_a5,
     author = {S. A. Albeverio and S. N. Lakaev and Zh. I. Abdullaev},
     title = {On the {Finiteness} of the {Discrete} {Spectrum} of a {Four-Particle} {Lattice} {Schr\"odinger} {Operator}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--60},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a5/}
}
TY  - JOUR
AU  - S. A. Albeverio
AU  - S. N. Lakaev
AU  - Zh. I. Abdullaev
TI  - On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schr\"odinger Operator
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 56
EP  - 60
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a5/
LA  - ru
ID  - FAA_2002_36_3_a5
ER  - 
%0 Journal Article
%A S. A. Albeverio
%A S. N. Lakaev
%A Zh. I. Abdullaev
%T On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schr\"odinger Operator
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 56-60
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a5/
%G ru
%F FAA_2002_36_3_a5
S. A. Albeverio; S. N. Lakaev; Zh. I. Abdullaev. On the Finiteness of the Discrete Spectrum of a Four-Particle Lattice Schr\"odinger Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 56-60. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a5/

[1] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[2] Merkurev S. P., Faddeev L. D., Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[3] Tsikon Kh., Frezi R., Kirish V., Saimon B., Operatory Shrëdingera, Mir, M., 1990

[4] Zhislin G. M., DAN SSSR, 207:1 (1972), 25–28 | MR | Zbl

[5] Zhislin G. M., “Konechnost diskretnogo spektra v kvantovoi probleme $n$ chastits”, TMF, 21 (1974), 60–73

[6] Yafaev D. R., “O tochechnom spektre v kvantovomekhanicheskoi zadache mnogikh chastits”, Izv. AN SSSR, ser. matem., 40:4 (1976), 908–948 | MR | Zbl

[7] Shmidt E., Tsigelman Kh., Problemy trekh tel v kvantovoi mekhanike, Nauka, M., 1979 | Zbl

[8] Mattis D. C., “The few-body problem on a lattice”, Rev. Modern. Phys., 58:2 (1986), 361–379 | DOI | MR

[9] Lakaev S. N., “Ob effekte Efimova v sisteme trekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego pril., 27:3 (1993), 15–28 | MR | Zbl

[10] Abdullaev Zh. I., Lakaev S. N., “Konechnost diskretnogo spektra trekhchastichnogo operatora Shredingera na reshetke”, TMF, 111:1 (1997), 94–108 | DOI | MR | Zbl

[11] Lakaev S. N., Abdullaev Zh. I., “Spektr chetyrekhchastichnogo operatora Shredingera s parnymi kontaktnymi vzaimodeistviyami na reshetke”, UMN, 53:3 (1998), 201–202 | DOI | MR | Zbl