Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2002_36_3_a3, author = {O. I. Mokhov}, title = {Compatible {Metrics} of {Constant} {Riemannian} {Curvature:} {Local} {Geometry,} {Nonlinear} {Equations,} and {Integrability}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {36--47}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a3/} }
TY - JOUR AU - O. I. Mokhov TI - Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2002 SP - 36 EP - 47 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a3/ LA - ru ID - FAA_2002_36_3_a3 ER -
%0 Journal Article %A O. I. Mokhov %T Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability %J Funkcionalʹnyj analiz i ego priloženiâ %D 2002 %P 36-47 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a3/ %G ru %F FAA_2002_36_3_a3
O. I. Mokhov. Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 36-47. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a3/
[1] Mokhov O. I., “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funkts. analiz i ego pril., 35:2 (2001), 24–36 ; arXiv: /arXiv:math.DG/0005051 | DOI | MR | Zbl
[2] Mokhov O. I., On integrability of the equations for nonsingular pairs of compatible flat metrics, arXiv: /math.DG/0005081 | MR
[3] Mokhov O. I., “Ploskie puchki metrik i integriruemye reduktsii uravnenii Lame”, UMN, 56:2 (2001), 221–222 | DOI | MR | Zbl
[4] Ferapontov E. V., Compatible Poisson brackets of hydrodynamic type, arXiv: /math.DG/0005221 | MR
[5] Mokhov O. I., Ferapontov E. V., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl
[6] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl
[7] Dubrovin B., “Geometry of 2D topological field theories”, Lect. Notes in Math., 1620, 1996, 120–348 ; arXiv: /hep-th/9407018 | DOI | MR | Zbl
[8] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl
[9] Krichever I. M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego pril., 31:1 (1997), 32–50 | DOI | MR | Zbl
[10] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, 2nd ed., 1910 | MR | Zbl