Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 36-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The description problem is solved for compatible metrics of constant Riemannian curvature. Nonlinear equations describing all nonsingular pencils of compatible metrics of constant Riemannian curvature are derived and their integrability by the inverse scattering method is proved. In particular, a Lax pair with a spectral parameter is found for these nonlinear equations. We prove that all nonsingular pairs of compatible metrics of constant Riemannian curvature are described by special integrable reductions of the nonlinear equations defining orthogonal curvilinear coordinate systems in spaces of constant curvature.
Keywords: flat pencil of metrics, compatible metrics, metric of constant Riemannian curvature, nonlinear integrable equation
Mots-clés : Lax pair, compatible Poisson brackets.
@article{FAA_2002_36_3_a3,
     author = {O. I. Mokhov},
     title = {Compatible {Metrics} of {Constant} {Riemannian} {Curvature:} {Local} {Geometry,} {Nonlinear} {Equations,} and {Integrability}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {36--47},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a3/}
}
TY  - JOUR
AU  - O. I. Mokhov
TI  - Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 36
EP  - 47
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a3/
LA  - ru
ID  - FAA_2002_36_3_a3
ER  - 
%0 Journal Article
%A O. I. Mokhov
%T Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 36-47
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a3/
%G ru
%F FAA_2002_36_3_a3
O. I. Mokhov. Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 36-47. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a3/

[1] Mokhov O. I., “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funkts. analiz i ego pril., 35:2 (2001), 24–36 ; arXiv: /arXiv:math.DG/0005051 | DOI | MR | Zbl

[2] Mokhov O. I., On integrability of the equations for nonsingular pairs of compatible flat metrics, arXiv: /math.DG/0005081 | MR

[3] Mokhov O. I., “Ploskie puchki metrik i integriruemye reduktsii uravnenii Lame”, UMN, 56:2 (2001), 221–222 | DOI | MR | Zbl

[4] Ferapontov E. V., Compatible Poisson brackets of hydrodynamic type, arXiv: /math.DG/0005221 | MR

[5] Mokhov O. I., Ferapontov E. V., “O nelokalnykh gamiltonovykh operatorakh gidrodinamicheskogo tipa, svyazannykh s metrikami postoyannoi krivizny”, UMN, 45:3 (1990), 191–192 | MR | Zbl

[6] Dubrovin B. A., Novikov S. P., “Gamiltonov formalizm odnomernykh sistem gidrodinamicheskogo tipa i metod usredneniya Bogolyubova–Uizema”, DAN SSSR, 270:4 (1983), 781–785 | MR | Zbl

[7] Dubrovin B., “Geometry of 2D topological field theories”, Lect. Notes in Math., 1620, 1996, 120–348 ; arXiv: /hep-th/9407018 | DOI | MR | Zbl

[8] Zakharov V. E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94:1 (1998), 103–139 | DOI | MR | Zbl

[9] Krichever I. M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. analiz i ego pril., 31:1 (1997), 32–50 | DOI | MR | Zbl

[10] Darboux G., Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars, 2nd ed., 1910 | MR | Zbl