On Sums of Projections
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 20-35
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, for all $n\in\mathbb{N}$, we describe the set $\Sigma_n$ of all real numbers $\alpha$ admitting a collection of projections $P_1,\dots,P_n$ on a Hilbert space $H$ such that $\sum_{k=1}^n P_k=\alpha I$ ($I$ is the identity operator on $H$) and study the problem to find all collections of this kind for a given $\alpha\in\Sigma_n$.
Keywords:
algebra, representation, operator, projection, identity.
Mots-clés : matrix
Mots-clés : matrix
@article{FAA_2002_36_3_a2,
author = {S. A. Kruglyak and V. I. Rabanovich and Yu. S. Samoilenko},
title = {On {Sums} of {Projections}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {20--35},
publisher = {mathdoc},
volume = {36},
number = {3},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a2/}
}
S. A. Kruglyak; V. I. Rabanovich; Yu. S. Samoilenko. On Sums of Projections. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 20-35. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a2/