On Sums of Projections
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 20-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, for all $n\in\mathbb{N}$, we describe the set $\Sigma_n$ of all real numbers $\alpha$ admitting a collection of projections $P_1,\dots,P_n$ on a Hilbert space $H$ such that $\sum_{k=1}^n P_k=\alpha I$ ($I$ is the identity operator on $H$) and study the problem to find all collections of this kind for a given $\alpha\in\Sigma_n$.
Keywords: algebra, representation, operator, projection, identity.
Mots-clés : matrix
@article{FAA_2002_36_3_a2,
     author = {S. A. Kruglyak and V. I. Rabanovich and Yu. S. Samoilenko},
     title = {On {Sums} of {Projections}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {20--35},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a2/}
}
TY  - JOUR
AU  - S. A. Kruglyak
AU  - V. I. Rabanovich
AU  - Yu. S. Samoilenko
TI  - On Sums of Projections
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 20
EP  - 35
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a2/
LA  - ru
ID  - FAA_2002_36_3_a2
ER  - 
%0 Journal Article
%A S. A. Kruglyak
%A V. I. Rabanovich
%A Yu. S. Samoilenko
%T On Sums of Projections
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 20-35
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a2/
%G ru
%F FAA_2002_36_3_a2
S. A. Kruglyak; V. I. Rabanovich; Yu. S. Samoilenko. On Sums of Projections. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 20-35. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a2/

[1] Wu P. Y., “Additive combination of special operators”, Functional Analysis and Operator Theory, 30, Banach Center Publ., Warszawa, 1994, 337–361 | MR | Zbl

[2] Jones V., “Index for subfactors”, Invent. Math., 72 (1983), 1–25 | DOI | MR | Zbl

[3] Rabanovich V. I., Samoilenko Yu. S., “Kogda summa idempotentov ili proektorov kratna edinitse”, Funkts. analiz i ego pril., 34:4 (2000), 91–93 | DOI | MR | Zbl

[4] Rabanovich V. I., Samoilenko Yu. S., “Kogda skalyarnyi operator predstavlyaetsya summoi proektorov”, Ukr. matem. zhurn., 53:7 (2001), 939–952 | MR | Zbl

[5] Kruglyak S. A., “Funktory Kokstera dlya odnogo klassa $\ast$-kolchanov”, Ukr. matem. zhurn., 54:6 (2002), 789–797 | MR | Zbl

[6] Bernshtein I. N., Gelfand I. M., Ponomarev V. A., “Funktory Kokstera i teorema Gabrielya”, UMN, 28:2 (1973), 19–33 | MR

[7] Fillmore P. A., “On sums of projections”, J. Funct. Anal., 4 (1969).), 146–152 | DOI | MR | Zbl

[8] Wang J.-H., Decomposition of operators into quadratic type, Ph. D. dissertation, National Chiao Tung Univ. Hsinchu, Taiwan, 1991

[9] Bespalov Yu. V., “Nabory ortoproektorov, svyazannykh sootnosheniyami”, Ukr. matem. zhurn., 44:3 (1992), 309–317 | MR

[10] Ehrhardt T., Sums of four idempotents, Preprint, Chemnitz, 1995 | MR | Zbl

[11] Ostrovskiĭ V., Samoĭlenko Yu., “Introduction to the Theory Representation of Finitely Presented $*$-algebras. 1: Representations by bounded operators”, Rev. Math. Math. Phys., 11, Gordon and Breach, 1999, 1–261 | DOI | MR

[12] Strelets A. V. Rabanovich V. I., Samoilenko Yu. S., “O tozhdestvakh v algebrakh $CQ_{n,\lambda}$, porozhdennykh idempotentami”, Ukr. matem. zhurn., 53:10 (2001), 1380–1390 | MR

[13] Ehrhardt T., On sums of five projections equal to a multiple of the identity, Preprint, Chemnitz, 2000

[14] Shulman V. S., “On representations of limit relations”, Meth. Func. Anal. Topology, 7:4 (2002), 85–87 | MR

[15] Djeldubaev E. R., Kruglyak S. A., “On representation of the $\ast$-algebra $CP_{n,\frac n{n-1}}$”, Meth. Func. Anal. Topology, 7:2 (2001), 35–41 | MR | Zbl

[16] Dixmier J., Les algebres d'operateurs dans l'espace hilbertien (Algebres de von Neumann), Gauthier–Villars, Paris, 1957, 1969 | MR | Zbl

[17] Kruglyak S. A., Samoilenko Yu. S., “O unitarnoi ekvivalentnosti naborov samosopryazhennykh operatorov”, Funkts. analiz i ego pril., 14:1 (1980), 60–62 | MR | Zbl

[18] Kruglyak S. A., Samoĭlenko Yu. S., “On complexity of description of representations of $\ast$-algebras generated by idempotents”, Proc. Amer. Math. Soc., 128:6 (2000), 1655–1664 | DOI | MR