Multipliers on the Set of Rademacher Series in Symmetric Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 87-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a symmetric space on $[0,1]$. Let $\Lambda(\mathcal{R},E)$ be the space of measurable functions $f$ such that $fg\in E$ for every almost everywhere convergent series $g=\sum b_nr_n\in E$, where $(r_n)$ are the Rademacher functions. In [G. P. Curbera, Proc. Edinb. Math. Soc., 40, No. 1, 119–126 (1997)] it was shown that, for a broad class of spaces $E$, the space $\Lambda(\mathcal{R},E)$ is not order isomorphic to a symmetric space, and we study the conditions under which such an isomorphism exists. We give conditions on $E$ for $\Lambda(\mathcal{R},E)$ to be order isomorphic to $L_\infty$. This includes some classes of Lorentz and Marcinkiewicz spaces. We also study the conditions under which $\Lambda(\mathcal{R},E)$ is order isomorphic to a symmetric space that differs from $L_\infty$. The answer is positive for the Orlicz spaces $E=L_{\Phi_q}$ with $\Phi_q(t)=\exp|t|^q-1$ and $0$.
Keywords: Rademacher series in symmetric spaces, Orlicz and Marcinkiewicz spaces, multiplier for Rademacher series.
@article{FAA_2002_36_3_a13,
     author = {G. P. Curbera and V. A. Rodin},
     title = {Multipliers on the {Set} of {Rademacher} {Series} in {Symmetric} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--90},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a13/}
}
TY  - JOUR
AU  - G. P. Curbera
AU  - V. A. Rodin
TI  - Multipliers on the Set of Rademacher Series in Symmetric Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 87
EP  - 90
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a13/
LA  - ru
ID  - FAA_2002_36_3_a13
ER  - 
%0 Journal Article
%A G. P. Curbera
%A V. A. Rodin
%T Multipliers on the Set of Rademacher Series in Symmetric Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 87-90
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a13/
%G ru
%F FAA_2002_36_3_a13
G. P. Curbera; V. A. Rodin. Multipliers on the Set of Rademacher Series in Symmetric Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 87-90. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a13/

[1] Astashkin S. V., Semenov E. M., DAN, 375:1 (2000), 7–9 | MR | Zbl

[2] Andrienko V. F., Itogi nauki. Matematicheskii analiz. 1970, VINITI, M., 1971, 203–262 | MR

[3] Curbera G. P., “A note on function spaces generated by Rademacher series”, Proc. Edinb. Math. Soc., 40:1 (1997), 119–126 | DOI | MR | Zbl

[4] Curbera G. P., Rodin V. A., Intern. Conf. for Geometry and Analysis, Sec. 2, Rostov Limanchick, 2000, 178–179

[5] Rodin V. A., Semenov E. M., Trudy matem. fakulteta VGU, 10, 1973, 88–96

[6] Rodin V. A., Semenov E. M., “Rademacher series in symmetric spaces”, Anal. Math., 1 (1975), 207–222 | DOI | MR | Zbl