Anti-Vandermonde Systems and Plane Trees
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 83-87
Cet article a éte moissonné depuis la source Math-Net.Ru
Some special systems of polynomial equations (anti-Vandermonde systems) and the definition fields of their solutions are studied. In the case of four variables it is proved that a definition field is an extension of a real quadratic field of degree 12.
Keywords:
algebraic fields, Galois theory
Mots-clés : polynomial algebra.
Mots-clés : polynomial algebra.
@article{FAA_2002_36_3_a12,
author = {Yu. Yu. Kochetkov},
title = {Anti-Vandermonde {Systems} and {Plane} {Trees}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {83--87},
year = {2002},
volume = {36},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a12/}
}
Yu. Yu. Kochetkov. Anti-Vandermonde Systems and Plane Trees. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 83-87. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a12/
[1] Shabat G., Zvonkin A., “Plane trees and algebraic numbers”, Jerusalem combinatorics '93, Contemp. Math., 178, Amer. Math. Soc., Providence, RI, 1994, 233–275 | DOI | MR | Zbl
[2] Kochetkov Yu. Yu., “O netrivialno razlozhimykh tipakh”, UMN, 52:4 (1997), 203–204 | DOI | MR | Zbl
[3] Zapponi L., “Fleurs, arbres et cellules: un invariant galoisien pour une famille d'arbres”, Compos. Math., 122 (2000), 113–133 | DOI | MR | Zbl
[4] Kochetkov Yu., “Trees of diameter 4.”, Formal Power Series and Algebraic Combinatorics (Moscow, 2000), Springer-Verlag, Berlin, 2000, 447–455 | DOI | MR