Classification of Finite Factor Representations of the $(2m+1)$-Dimensional Heisenberg Group over a Countable Field of Finite Characteristic
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a field $F$ that is the direct limit of an increasing chain of finite fields, we describe the Bratteli diagram, the finite complex factor representations, the Plancherel formula, and the projective modules of the corresponding Heisenberg group.
Keywords: factor representation, Heisenberg group, nilpotent group, Grothendieck group.
@article{FAA_2002_36_3_a11,
     author = {K. P. Kokhas'},
     title = {Classification of {Finite} {Factor} {Representations} of the $(2m+1)${-Dimensional} {Heisenberg} {Group} over a {Countable} {Field} of {Finite} {Characteristic}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a11/}
}
TY  - JOUR
AU  - K. P. Kokhas'
TI  - Classification of Finite Factor Representations of the $(2m+1)$-Dimensional Heisenberg Group over a Countable Field of Finite Characteristic
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 79
EP  - 83
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a11/
LA  - ru
ID  - FAA_2002_36_3_a11
ER  - 
%0 Journal Article
%A K. P. Kokhas'
%T Classification of Finite Factor Representations of the $(2m+1)$-Dimensional Heisenberg Group over a Countable Field of Finite Characteristic
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 79-83
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a11/
%G ru
%F FAA_2002_36_3_a11
K. P. Kokhas'. Classification of Finite Factor Representations of the $(2m+1)$-Dimensional Heisenberg Group over a Countable Field of Finite Characteristic. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 3, pp. 79-83. http://geodesic.mathdoc.fr/item/FAA_2002_36_3_a11/

[1] Vershik A. M., Kerov S. V., Itogi nauki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR

[2] Vershik A. M., Kokhas K. P., Algebra i analiz, 2:6 (1990), 98–106 | MR | Zbl

[3] Kokhas K. P., Zap. nauchn. semin. POMI, 283, 2001, 140–155 | MR | Zbl

[4] Lidl R., Niderraiter G., Konechnye polya, t. 1, 2, Mir, M., 1988 | MR | Zbl

[5] Smirnov S. V., DAN SSSR, 170:3 (1966), 524–525 | MR | Zbl