Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 80-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a complete list of nonspherical real hypersurfaces in $\mathbb{C}^3$ that are Levi nondegenerate and admit seven-dimensional transitive groups of local holomorphic transformations. The description splits into two cases corresponding to strictly pseudoconvex surfaces and surfaces with nondegenerate sign-indefinite Levi form.
Keywords: homogeneous manifold, normal form of equation, vector field, isotropy group, Levi form.
@article{FAA_2002_36_2_a9,
     author = {A. V. Loboda},
     title = {Homogeneous {Nondegenerate} {Hypersurfaces} in $\mathbb{C}^3$ with {Two-Dimensional} {Isotropy} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--83},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 80
EP  - 83
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/
LA  - ru
ID  - FAA_2002_36_2_a9
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 80-83
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/
%G ru
%F FAA_2002_36_2_a9
A. V. Loboda. Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 80-83. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/

[1] Cartan E., “Sur la geometrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Math. Pura Appl. (4), 11 (1933), 17–90 | DOI | MR

[2] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3 (1974), 219–271 | DOI | MR

[3] Burns D., Shneider S., Wells R. O., “Deformations of strictly pseudoconvex domains”, Invent. Math., 46:3 (1978), 237–253 | DOI | MR | Zbl

[4] Webster S. M., “On the Moser normal form at a non-umbilic point”, Math. Ann., 233 (1978), 97–102 | DOI | MR | Zbl

[5] Loboda A. V., “O lokalnykh avtomorfizmakh veschestvenno-analiticheskikh giperpoverkhnostei”, Izv. AN SSSR, Ser. matem., 45:3 (1981), 620–645 | MR | Zbl

[6] Ezhov V. V., “Linearizatsiya gruppy stabilnosti odnogo klassa giperpoverkhnostei”, UMN, 41:3 (1986), 181–182 | MR | Zbl

[7] Winkelmann J., The classification of $3$-dimensional homogeneous complex manifolds, Lect. Notes in Math., 1602, Springer-Verlag, 1995 | DOI | MR | Zbl

[8] Beloshapka V. K., “Odnorodnye veschestvennye giperpoverkhnosti v $\mathbb C^2$”, Matem. zametki, 60:5 (1996), 760–764 | DOI | MR | Zbl

[9] Ezhov V. V., Loboda A. V., Shmalts G., “Kanonicheskaya forma mnogochlena chetvertoi stepeni v normalnom uravnenii veschestvennoi giperpoverkhnosti v $\mathbb C^3$”, Matem. zametki, 66:4 (1999), 624–626 | DOI | MR

[10] Loboda A. V., “O razmernosti gruppy, tranzitivno deistvuyuschei na giperpoverkhnosti v $\mathbb{C}^3$”, Funkts. analiz i ego pril., 33:1 (1999), 68–71 | DOI | MR | Zbl

[11] Loboda A. V., “Lokalnoe opisanie odnorodnykh veschestvennykh giperpoverkhnostei dvumernogo kompleksnogo prostranstva v terminakh ikh normalnykh uravnenii”, Funkts. analiz i ego pril., 34:2 (2000), 33–42 | DOI | MR | Zbl