Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 80-83

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a complete list of nonspherical real hypersurfaces in $\mathbb{C}^3$ that are Levi nondegenerate and admit seven-dimensional transitive groups of local holomorphic transformations. The description splits into two cases corresponding to strictly pseudoconvex surfaces and surfaces with nondegenerate sign-indefinite Levi form.
Keywords: homogeneous manifold, normal form of equation, vector field, isotropy group, Levi form.
@article{FAA_2002_36_2_a9,
     author = {A. V. Loboda},
     title = {Homogeneous {Nondegenerate} {Hypersurfaces} in $\mathbb{C}^3$ with {Two-Dimensional} {Isotropy} {Groups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--83},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/}
}
TY  - JOUR
AU  - A. V. Loboda
TI  - Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 80
EP  - 83
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/
LA  - ru
ID  - FAA_2002_36_2_a9
ER  - 
%0 Journal Article
%A A. V. Loboda
%T Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 80-83
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/
%G ru
%F FAA_2002_36_2_a9
A. V. Loboda. Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 80-83. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/