Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 80-83
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a complete list of nonspherical real hypersurfaces in $\mathbb{C}^3$ that are Levi nondegenerate and admit seven-dimensional transitive groups of local holomorphic transformations. The description splits into two cases corresponding to strictly pseudoconvex surfaces and surfaces with nondegenerate sign-indefinite Levi form.
Keywords:
homogeneous manifold, normal form of equation, vector field, isotropy group, Levi form.
@article{FAA_2002_36_2_a9,
author = {A. V. Loboda},
title = {Homogeneous {Nondegenerate} {Hypersurfaces} in $\mathbb{C}^3$ with {Two-Dimensional} {Isotropy} {Groups}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {80--83},
publisher = {mathdoc},
volume = {36},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/}
}
TY - JOUR
AU - A. V. Loboda
TI - Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups
JO - Funkcionalʹnyj analiz i ego priloženiâ
PY - 2002
SP - 80
EP - 83
VL - 36
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/
LA - ru
ID - FAA_2002_36_2_a9
ER -
A. V. Loboda. Homogeneous Nondegenerate Hypersurfaces in $\mathbb{C}^3$ with Two-Dimensional Isotropy Groups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 80-83. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a9/