Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2002_36_2_a7, author = {Sh. A. Ayupov}, title = {Description of the {Real} von {Neumann} {Algebras} with {Abelian} {Skew-Symmetric} {Part}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {75--77}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a7/} }
Sh. A. Ayupov. Description of the Real von Neumann Algebras with Abelian Skew-Symmetric Part. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 75-77. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a7/
[1] Ayupov Sh. A., Rakhimov A. A., Usmanov Sh. M., Jordan, Real and Lie Structures in Operator Algebras, Mathematics and its Applications, 418, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl
[2] Stormer E., “On anti-automorphisms of von Neumann algebras”, Pacific J. Math., 21:2 (1967), 349–370 | DOI | MR
[3] Topping D., Jordan algebras of self-adjoint operators, Mem. Amer. Math. Soc., 53, 1965 | MR | Zbl
[4] Li Minli, Li-Bingren, Acta Math. Sinica, 14:1 (1998), 85–90 | DOI | MR | Zbl
[5] Ayupov Sh. A., Rakhimov A. A., Abduvaitov A. Kh., Dokl. AN RUz, 2001, no. 5
[6] Putnam C. R., “On normal operators in Hilbert space”, Amer. J. Math., 73 (1951), 357–362 | DOI | MR | Zbl
[7] Stacey P. J., “${\rm I}_{2}$ $JBW$-algebras”, Quart J. Math. Oxford, 33:129 (1982), 115–127 | DOI | MR
[8] Robertson A. G., “Automorphisms of spin factors and the decomposition of positive maps”, Quart. J. Math. Oxford, 34:133 (1983), 87–96 | DOI | MR | Zbl
[9] Ayupov Sh. A., Azamov N. A., “Commutators and Lie isomorphisms of skew elements in prime operator algebras”, Comm. Algebra, 24:4 (1996), 1501–1520 | DOI | MR | Zbl