Isoenergy Spectral Problem for Multidimensional Difference Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 45-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the direct and inverse isoenergy spectral problems are solved for a class of multidimensional periodic difference operators. It is proved that the inverse spectral problem is solvable in terms of theta functions of curves added to the spectral variety under compactification, and multidimensional analogs of the Veselov–Novikov relations are found.
Keywords: multidimensional scattering problem, Bloch function, spectral data.
@article{FAA_2002_36_2_a4,
     author = {A. A. Oblomkov},
     title = {Isoenergy {Spectral} {Problem} for {Multidimensional} {Difference} {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {45--61},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a4/}
}
TY  - JOUR
AU  - A. A. Oblomkov
TI  - Isoenergy Spectral Problem for Multidimensional Difference Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 45
EP  - 61
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a4/
LA  - ru
ID  - FAA_2002_36_2_a4
ER  - 
%0 Journal Article
%A A. A. Oblomkov
%T Isoenergy Spectral Problem for Multidimensional Difference Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 45-61
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a4/
%G ru
%F FAA_2002_36_2_a4
A. A. Oblomkov. Isoenergy Spectral Problem for Multidimensional Difference Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 45-61. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a4/

[1] Shadan K., Sabate P., Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1980 | MR

[2] Dubrovin A. B., Krichever I. M., Novikov S. P., “Uravnenie Shrëdingera v periodicheskom pole i rimanovy poverkhnosti”, DAN CCSR, 229:1 (1976), 15–18 | MR | Zbl

[3] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye operatory Shrëdingera: yavnye formuly i evolyutsionnye uravneniya”, DAN SSSR, 279:1 (1984), 20–24 | MR | Zbl

[4] Veselov A. P., Novikov S. P., “Konechnozonnye dvumernye operatory Shrëdingera. Potentsialnye operatory”, DAN SSSR, 279:4 (1984), 784–788 | MR | Zbl

[5] Novikov S. P., Veselov A. P., “Two-dimensional Schrodinger operator: inverse scattering problem and evolutional equations”, Phys. D, 18 (1986), 267–273 | DOI | MR | Zbl

[6] Krichever I. M., “Dvumernye periodicheskie raznostnye operatory i algebraicheskaya geometriya”, DAN SSSR, 285:1 (1985), 31–36 | MR | Zbl

[7] Veselov A. P., Krichever I. M., Novikov S. P., “Two-dimensional periodic Schrödinger operators and Prym's $\theta$-functions”, Geometry today, Progress in Math., 60, Birkhäuser Boston, Boston, MA, 1985, 283–301 | MR

[8] Oblomkov A. A., “O raznostnykh operatorakh na dvumernykh pravilnykh reshetkakh”, Teor. matem. fizika, 127:1 (2001), 34–46 | DOI | MR | Zbl

[9] Oblomkov A. A., Penskoi A. V., “Two-dimensional algebro-geometric operators”, J. Phys. A: Math. Gen., 33 (2000), 9255–9264 | DOI | MR | Zbl

[10] Kappeler T., “On isospectral potentials on discrete lattice, II”, Adv. Appl. Math., 9:4 (1988), 428–438 | DOI | MR | Zbl

[11] Bättig D. A., “A toroidal compactification of the complex Fermi surface”, Comment. Math. Helv., 65:1 (1990), 144–149 | MR

[12] Knörrer H., Trubowitz E., “A directional compactification of the complex Boch variety”, Comment. Math. Helv., 69:1 (1990), 144–149 | MR

[13] Bättig D., Knörrer H., Trubowitz E., “A directional compactification of the complex Fermi surface”, Compositio Math., 79:2 (1991), 205–229 | MR | Zbl

[14] Novikov S. P., Dynnikov I. A., “Diskretnye spektralnye simmetrii malomernykh differentsialnykh operatorov i raznostnye operatory na pravilnykh reshetkakh i dvumernykh mnogoobraziyakh”, UMN, 52:5 (1997), 175–234 | DOI | MR | Zbl

[15] Novikov S. P., Dynnikov I. A., “Preobrazovaniya Laplasa i simplitsialnye svyazannosti”, UMN, 52:6 (1997), 157–158 | DOI | MR | Zbl

[16] Oblomkov A. A., “O spektralnykh svoistvakh dvukh klassov raznostnykh periodicheskikh operatorov”, Matem. sb., 193:4 (2002), 87–112 | DOI | MR | Zbl

[17] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[18] Veselov A. P., “Integriruemye sistemy s diskretnym vremenem i raznostnye operatory”, Funkts. analiz i ego pril., 22:2 (1988), 1–13 | MR

[19] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, V 2-kh tomakh, Mir, M., 1982 | MR