Euler Characteristic of Spaces of Real Meromorphic Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 92-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any connected component $H_0$ of the space of real meromorphic functions we construct a compactification $N(H_0)$. Then we express the Euler characteristics of the spaces $H_0$ and $N(H_0)$ in terms of topological invariants of functions in $H_0$.
Keywords: real meromorphic function, Euler characteristic.
Mots-clés : compactification
@article{FAA_2002_36_2_a12,
     author = {S. V. Shadrin},
     title = {Euler {Characteristic} of {Spaces} of {Real} {Meromorphic} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {92--94},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a12/}
}
TY  - JOUR
AU  - S. V. Shadrin
TI  - Euler Characteristic of Spaces of Real Meromorphic Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 92
EP  - 94
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a12/
LA  - ru
ID  - FAA_2002_36_2_a12
ER  - 
%0 Journal Article
%A S. V. Shadrin
%T Euler Characteristic of Spaces of Real Meromorphic Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 92-94
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a12/
%G ru
%F FAA_2002_36_2_a12
S. V. Shadrin. Euler Characteristic of Spaces of Real Meromorphic Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 92-94. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a12/

[1] Khovanskii A. G., Zdravkovska S., “Branched covers of $S_2$ and braid groups”, J. Knot Theory Ramific, 5:1 (1996), 55–75 | DOI | MR

[2] Natanzon S. M., Trudy semin. vekt. tenz. anal., 23, 1988, 79–103 ; 24, 1990, 104–132; Selecta Math. Soviet., 12:3 (1993), 251–291 | MR | Zbl | MR

[3] Natanzon S., Turaev V., “A compactification of the Hurwitz space”, Topology, 38:4 (1999), 889–914 | DOI | MR | Zbl

[4] Shadrin S. V., arXiv: /math.CV/0202060