Classification of Measurable Functions of Several Variables and Invariantly Distributed Random Matrices
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 12-27
Voir la notice de l'article provenant de la source Math-Net.Ru
The classification of measurable functions of several variables is reduced to the problem of describing some special measures on the matrix (tensor) space, namely, the so-called matrix (tensor) distributions, that are invariant with respect to the permutations of indices. In the case of functions with additional symmetries (symmetric, unitarily or orthogonally invariant, etc.), these measures also have additional symmetries. This relationship between measurable functions and measures on the tensor space as well as our method in itself are used in both directions, namely, on one hand, to investigate invariance properties of functions and characterizations of matrix distributions, and, on the other hand, to classify the set of all invariant measures. We also give a canonical model of a measurable function with a given matrix distribution.
Keywords:
classification of functions, infinite symmetric group.
Mots-clés : matrix distributions
Mots-clés : matrix distributions
@article{FAA_2002_36_2_a1,
author = {A. M. Vershik},
title = {Classification of {Measurable} {Functions} of {Several} {Variables} and {Invariantly} {Distributed} {Random} {Matrices}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {12--27},
publisher = {mathdoc},
volume = {36},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a1/}
}
TY - JOUR AU - A. M. Vershik TI - Classification of Measurable Functions of Several Variables and Invariantly Distributed Random Matrices JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2002 SP - 12 EP - 27 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a1/ LA - ru ID - FAA_2002_36_2_a1 ER -
%0 Journal Article %A A. M. Vershik %T Classification of Measurable Functions of Several Variables and Invariantly Distributed Random Matrices %J Funkcionalʹnyj analiz i ego priloženiâ %D 2002 %P 12-27 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a1/ %G ru %F FAA_2002_36_2_a1
A. M. Vershik. Classification of Measurable Functions of Several Variables and Invariantly Distributed Random Matrices. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 2, pp. 12-27. http://geodesic.mathdoc.fr/item/FAA_2002_36_2_a1/