Belavin Elliptic $R$-Matrices and Exchange Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 59-74
Voir la notice de l'article provenant de la source Math-Net.Ru
We study Zamolodchikov algebras whose commutation relations are described by Belavin matrices defining a solution of the Yang–Baxter equation (Belavin $R$-matrices). Homomorphisms of Zamolodchikov algebras into dynamical algebras with exchange relations and also of algebras with exchange relations into Zamolodchikov algebras are constructed. It turns out that the structure of these algebras with exchange relations depends
substantially on the primitive $n$th root of unity entering the definition of Belavin $R$-matrices.
@article{FAA_2002_36_1_a4,
author = {A. V. Odesskii},
title = {Belavin {Elliptic} $R${-Matrices} and {Exchange} {Algebras}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {59--74},
publisher = {mathdoc},
volume = {36},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a4/}
}
A. V. Odesskii. Belavin Elliptic $R$-Matrices and Exchange Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 59-74. http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a4/