Sharp Pointwise Interpolation Inequalities for Derivatives
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 36-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove new pointwise inequalities involving the gradient of a function $u\in C^1(\mathbb{R}^n)$, the modulus of continuity $\omega$ of the gradient $\nabla u$, and a certain maximal function $\mathcal{M}^{\diamond}u$ and show that these inequalities are sharp. A simple particular case corresponding to $n=1$ and $\omega(r)=r$ is the Landau type inequality $$ |u'(x)|^2\le\frac83\,\mathcal{M}^{\diamond}u(x)\mathcal{M}^{\diamond}u''(x), $$ where the constant $8/3$ is best possible and $$ \mathcal{M}^{\diamond}u(x)=\sup_{r>0}\frac1{2r}\bigg|\int_{x-r}^{x+r}\operatorname{sign}(y-x)u(y)\,dy\bigg|. $$
@article{FAA_2002_36_1_a3,
     author = {V. G. Maz'ya and T. O. Shaposhnikova},
     title = {Sharp {Pointwise} {Interpolation} {Inequalities} for {Derivatives}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {36--58},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a3/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - T. O. Shaposhnikova
TI  - Sharp Pointwise Interpolation Inequalities for Derivatives
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 36
EP  - 58
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a3/
LA  - ru
ID  - FAA_2002_36_1_a3
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A T. O. Shaposhnikova
%T Sharp Pointwise Interpolation Inequalities for Derivatives
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 36-58
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a3/
%G ru
%F FAA_2002_36_1_a3
V. G. Maz'ya; T. O. Shaposhnikova. Sharp Pointwise Interpolation Inequalities for Derivatives. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 36-58. http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a3/

[1] Bojarski B., Hajlasz P., “Pointwise inequalities for Sobolev functions”, Studia Math., 106 (1993), 77–92 | MR | Zbl

[2] Carton-Lebrun C., Heinig H. P., “Weighted norm inequalities involving gradients”, Proc. Royal Soc. Edinburgh, 112A (1989), 331–341 | DOI | MR

[3] Fefferman C., Stein E., “$H^p$-spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl

[4] Gagliardo E., “Ulteriori proprietà di alcune classi di funzioni in più variabili”, Ric. Mat., 8:1 (1959), 24–51 | MR | Zbl

[5] Hadamard J., “Sur certaines propriétés des trajectoires en dynamique”, J. Math., Sér. 5, 3 (1897), 331–387 | Zbl

[6] Hardy G. H., Littlewood J. E., “Contributions to the arithmetic theory of series”, Proc. London Math. Soc., Ser. 2, 11, 1912–1913, 411–478 | MR | Zbl

[7] Kałamajska A., “Pointwise interpolative inequalities and Nirenberg type estimates in weighted Sobolev spaces”, Studia Math., 108:3 (1994), 275–290 | DOI | MR

[8] Kannai Y., “Hypoellipticity of certain degenerate elliptic boundary value problems”, Trans. Amer. Math. Soc., 217 (1976), 311–328 | DOI | MR | Zbl

[9] Kato Y., “Mixed type boundary conditions for second order elliptic differential equations”, J. Math. Soc. Japan, 26 (1974), 405–432 | DOI | MR | Zbl

[10] Kneser A., “Studien über die Bewegungsvorgänge in der Umgebung instabiler Gleichgewichtslagen”, J. für die Reine und Angew. Math., 118 (1897), 186–223 | MR | Zbl

[11] Kolmogorov A. N., “Une généralisation de l'inégalité de M./,J. Hadamard entre les bornes supérieures des dérivées successives d'une fonction”, C. R. Acad. Sci. Paris, 207 (1938), 764–765 | Zbl

[12] Landau E., “Einige Ungleichungen für zweimal differenzierbare Funktionen”, Proc. London Math. Soc., 13 (1913), 43–49 | DOI | MR | Zbl

[13] Lax P. D., Nirenberg L., “On solvability of difference schemes, a sharp form of Gårding's inequality”, Comm. Pure Appl. Math., 19 (1966), 473–492 | DOI | MR | Zbl

[14] Mazya V. G., “Vyrozhdayuschayasya zadacha s kosoi proizvodnoi”, Matem. sb., 87 (1972), 417–454

[15] Mazzya V., Kufner A., “Variations on the theme of the inequality $(f')^2\le 2f\sup|f''|$”, Manuscripta Math., 56 (1986), 89–104 | DOI | MR

[16] Mazzya V., Shaposhnikova T., “On pointwise interpolation inequalities for derivatives”, Mathematica Bohemica, 124:2–3 (1999), 131–148 | DOI | MR

[17] Mazzya V., Shaposhnikova T., “Maximal algebra of multipliers between fractional Sobolev spaces”, Trudy po analizu i geometrii, ed. S. K. Vodopyanov, Izd-vo Instituta matematiki im. S. L. Soboleva SO RAN, Novosibirsk, 2000, 387–400 | MR

[18] Mazzya V., Shaposhnikova T., “Maximal Banach algebra of multipliers between Bessel potential spaces”, Problems and Methods in Mathematical Physics, The Siegfried Prössdorf Memorial Volume, Operator Theory: Advances and Application, 121, eds. J. Elschner, I. Gohberg, and B. Silbermann, Birkhäuser, Basel, 2001, 352–365 | MR

[19] Mazzya V., Shaposhnikova T., “An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces”, J. Evolution Equations (to appear) | MR

[20] Nirenberg L., “On elliptic partial differential equations: Lecture 2”, Ann. Sc. Norm. Sup. Pisa, Ser. 3, 13 (1959), 115–162 | MR

[21] Nirenberg L., Tréves F., “Solvability of the first order linear partial differential equation”, Comm. Pure Appl. Math., 16 (1963), 331–351 | DOI | MR | Zbl

[22] Sz.-Nagy B., “Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung”, Acta Sci. Math. Szeged, 10 (1941), 64–74 | MR