Sharp Pointwise Interpolation Inequalities for Derivatives
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 36-58

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove new pointwise inequalities involving the gradient of a function $u\in C^1(\mathbb{R}^n)$, the modulus of continuity $\omega$ of the gradient $\nabla u$, and a certain maximal function $\mathcal{M}^{\diamond}u$ and show that these inequalities are sharp. A simple particular case corresponding to $n=1$ and $\omega(r)=r$ is the Landau type inequality $$ |u'(x)|^2\le\frac83\,\mathcal{M}^{\diamond}u(x)\mathcal{M}^{\diamond}u''(x), $$ where the constant $8/3$ is best possible and $$ \mathcal{M}^{\diamond}u(x)=\sup_{r>0}\frac1{2r}\bigg|\int_{x-r}^{x+r}\operatorname{sign}(y-x)u(y)\,dy\bigg|. $$
@article{FAA_2002_36_1_a3,
     author = {V. G. Maz'ya and T. O. Shaposhnikova},
     title = {Sharp {Pointwise} {Interpolation} {Inequalities} for {Derivatives}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {36--58},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a3/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - T. O. Shaposhnikova
TI  - Sharp Pointwise Interpolation Inequalities for Derivatives
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 36
EP  - 58
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a3/
LA  - ru
ID  - FAA_2002_36_1_a3
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A T. O. Shaposhnikova
%T Sharp Pointwise Interpolation Inequalities for Derivatives
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 36-58
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a3/
%G ru
%F FAA_2002_36_1_a3
V. G. Maz'ya; T. O. Shaposhnikova. Sharp Pointwise Interpolation Inequalities for Derivatives. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 36-58. http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a3/