Riesz Products, Random Walks, and the Spectrum
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 16-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that to a classical Riesz product one can naturally assign a random walk; the spectrum of the shifts on the tail algebra of the random walk is defined by the measure to which the Riesz product converges. This observation is extended to general groups, which leads to some operator analogs of Riesz products. The properties of operator Riesz products are investigated.
@article{FAA_2002_36_1_a1,
     author = {R. S. Ismagilov},
     title = {Riesz {Products,} {Random} {Walks,} and the {Spectrum}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {16--29},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a1/}
}
TY  - JOUR
AU  - R. S. Ismagilov
TI  - Riesz Products, Random Walks, and the Spectrum
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 16
EP  - 29
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a1/
LA  - ru
ID  - FAA_2002_36_1_a1
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%T Riesz Products, Random Walks, and the Spectrum
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 16-29
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a1/
%G ru
%F FAA_2002_36_1_a1
R. S. Ismagilov. Riesz Products, Random Walks, and the Spectrum. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 16-29. http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a1/

[1] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR

[2] Ismagilov R. S., “Spektr dinamicheskikh sistem i proizvedeniya Rissa”, Matem. sb., 180:7 (1989), 888–912 | MR

[3] Ismagilov R. S., “Ob ostatochnoi algebre sluchainykh posledovatelnostei”, Teoriya veroyatnostei i ee primeneniya, 18:1 (1973), 186–193 | MR | Zbl

[4] Queffelec M., Substitutional dynamical systems, spectral analysis, Lect. Notes in Math., 1294, Springer-Verlag, Berlin–New York, 1987 | DOI | MR | Zbl

[5] Vershik A. M., Livshits A. N., “Adic models of ergodic transformations, spectral theory, substitutions, and related topics”, Adv. Sov. Math., 9 (1992), 185–204 | MR | Zbl

[6] Kirillov A. A., “Dinamicheskie sistemy, faktory i predstavleniya grupp”, UMN, 22:5 (1967), 67–80 | MR | Zbl

[7] Hewitt E., Savage L., “Symmetric measures on cartesian products”, Trans. Amer. Math. Soc., 80 (1955), 470–501 | DOI | MR | Zbl

[8] Peyriere J., “Sur le produits de Riesz”, C. R. Acad. Sci. Paris Ser. A-B, 276 (1973), 1417–1418 | MR

[9] Zimmer R., “Ergodic theory, group representations, and rigidity”, Bull. Amer. Math. Soc., 6:3 (1982), 383–416 | DOI | MR | Zbl