Pseudoquaternion Geometry
Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe complex holomorphic transformations of a quaternion vector space taking left quaternion lines to left quaternion lines and real linear transformations of the quaternion plane simultaneously preserving the sets of left and right quaternion lines.
@article{FAA_2002_36_1_a0,
     author = {V. I. Arnol'd},
     title = {Pseudoquaternion {Geometry}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a0/}
}
TY  - JOUR
AU  - V. I. Arnol'd
TI  - Pseudoquaternion Geometry
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2002
SP  - 1
EP  - 15
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a0/
LA  - ru
ID  - FAA_2002_36_1_a0
ER  - 
%0 Journal Article
%A V. I. Arnol'd
%T Pseudoquaternion Geometry
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2002
%P 1-15
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a0/
%G ru
%F FAA_2002_36_1_a0
V. I. Arnol'd. Pseudoquaternion Geometry. Funkcionalʹnyj analiz i ego priloženiâ, Tome 36 (2002) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_2002_36_1_a0/

[1] Arnold V. I., “Kompleksifikatsiya tetraedra i psevdoproektivnye preobrazovaniya”, Funkts. analiz i ego pril., 35:4 (2001), 1–7 | DOI | MR | Zbl