Analogs of Essential Singularities for Sequences of Polynomial Mappings
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 26-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence of polynomial self-mappings of $\mathbb{C}^n$ and a given ball in $\mathbb{C}^n$, we state conditions guaranteeing that the union of images of any larger concentric ball is everywhere dense. Under slightly more severe conditions, one can use a sequence of concentric balls (one for each mapping) with radii tending to zero. The common center of these balls is, in a sense, an essential singularity of the sequence of mappings.
@article{FAA_2001_35_4_a3,
     author = {I. M. Dektyarev},
     title = {Analogs of {Essential} {Singularities} for {Sequences} of {Polynomial} {Mappings}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--31},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a3/}
}
TY  - JOUR
AU  - I. M. Dektyarev
TI  - Analogs of Essential Singularities for Sequences of Polynomial Mappings
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 26
EP  - 31
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a3/
LA  - ru
ID  - FAA_2001_35_4_a3
ER  - 
%0 Journal Article
%A I. M. Dektyarev
%T Analogs of Essential Singularities for Sequences of Polynomial Mappings
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 26-31
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a3/
%G ru
%F FAA_2001_35_4_a3
I. M. Dektyarev. Analogs of Essential Singularities for Sequences of Polynomial Mappings. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 26-31. http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a3/