Analogs of Essential Singularities for Sequences of Polynomial Mappings
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 26-31
Cet article a éte moissonné depuis la source Math-Net.Ru
For a sequence of polynomial self-mappings of $\mathbb{C}^n$ and a given ball in $\mathbb{C}^n$, we state conditions guaranteeing that the union of images of any larger concentric ball is everywhere dense. Under slightly more severe conditions, one can use a sequence of concentric balls (one for each mapping) with radii tending to zero. The common center of these balls is, in a sense, an essential singularity of the sequence of mappings.
@article{FAA_2001_35_4_a3,
author = {I. M. Dektyarev},
title = {Analogs of {Essential} {Singularities} for {Sequences} of {Polynomial} {Mappings}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {26--31},
year = {2001},
volume = {35},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a3/}
}
I. M. Dektyarev. Analogs of Essential Singularities for Sequences of Polynomial Mappings. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 26-31. http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a3/