Radicals in Banach Algebras and Some Problems in the Theory of Radical Banach Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 88-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2001_35_4_a10,
     author = {Yu. V. Turovskii and V. S. Shulman},
     title = {Radicals in {Banach} {Algebras} and {Some} {Problems} in the {Theory} of {Radical} {Banach} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--91},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a10/}
}
TY  - JOUR
AU  - Yu. V. Turovskii
AU  - V. S. Shulman
TI  - Radicals in Banach Algebras and Some Problems in the Theory of Radical Banach Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 88
EP  - 91
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a10/
LA  - ru
ID  - FAA_2001_35_4_a10
ER  - 
%0 Journal Article
%A Yu. V. Turovskii
%A V. S. Shulman
%T Radicals in Banach Algebras and Some Problems in the Theory of Radical Banach Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 88-91
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a10/
%G ru
%F FAA_2001_35_4_a10
Yu. V. Turovskii; V. S. Shulman. Radicals in Banach Algebras and Some Problems in the Theory of Radical Banach Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 4, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2001_35_4_a10/

[1] Dixon P., “Topologically irreducible representations and radicals in Banach algebras”, Proc. London Math. Soc. (3), 74 (1997), 174–200 | DOI | MR | Zbl

[2] Wojtynski W., “On the existence of closed two-sided ideals in radical Banach algebras with compact elements”, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. et Phys., 26:2 (1978), 109–113 | MR | Zbl

[3] Aupetit B., Proprietes spectrales des algebres de Banach, Lect. Notes Math., 735, Springer-Verlag, Berlin, 1979 | DOI | MR | Zbl

[4] Read C. J., “Quasinilpotent operators and the invariant subspace problem”, J. London Math. Soc. (2), 56 (1997), 595–606 | DOI | MR | Zbl

[5] Vala K., “On compact sets of compact operators”, Ann. Acad. Sci. Fenn. Ser. A, I, 351 (1964), 1–8 | MR

[6] Berger M. A., Wang Y., “Bounded semigroups of matrices”, Linear Algebra Appl., 166 (1992), 21–27 | DOI | MR | Zbl

[7] Fainshtein A. S., “Taylor joint spectrum for families of operators generating nilpotent Lie algebras”, J. Operator Theory, 29 (1993), 3–27 | MR | Zbl