Ultraspectra of a Representation of a Banach Lie Algebra
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 80-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2001_35_3_a9,
     author = {A. A. Dosiev},
     title = {Ultraspectra of a {Representation} of a {Banach} {Lie} {Algebra}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {80--84},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a9/}
}
TY  - JOUR
AU  - A. A. Dosiev
TI  - Ultraspectra of a Representation of a Banach Lie Algebra
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 80
EP  - 84
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a9/
LA  - ru
ID  - FAA_2001_35_3_a9
ER  - 
%0 Journal Article
%A A. A. Dosiev
%T Ultraspectra of a Representation of a Banach Lie Algebra
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 80-84
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a9/
%G ru
%F FAA_2001_35_3_a9
A. A. Dosiev. Ultraspectra of a Representation of a Banach Lie Algebra. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 80-84. http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a9/

[1] Fainshtein A. S., “Taylor joint spectrum for families of operators generating nilpotent Lie algebras”, J. Operator Theory, 29 (1993), 3–27 | MR | Zbl

[2] Taylor J., “A joint spectrum for several commuting operators”, Funct. Anal., 6 (1970), 172–191 | DOI | MR | Zbl

[3] Taylor J., “Homology and cohomology for topological algebras”, Adv. Math., 9 (1972), 137–182 | DOI | MR | Zbl

[4] Slodkowski Z., “An infinite family of joint spectra”, Stud. Math., 61 (1977), 239–255 | DOI | MR | Zbl

[5] Bupbaki H., Gomologicheskaya algebra, Nauka, M., 1987 | MR

[6] González M., Martinez-Abejón A., “Ultrapowers and semi-Fredholm operators”, Boll. Unione Math. Ital. B, VII Ser., 11:2 (1997), 415–433 | MR | Zbl

[7] Kartan A., Eilenberg C., Gomologicheskaya algebra, IL, M., 1960

[8] Ott C., “A note on a paper of E. Boasso and A. Larotonda: “A spectral theory for solvable Lie algebras of operators””, Pacific J. Math., 173:1 (1996), 173–179 | DOI | MR | Zbl

[9] Turovskii Yu. V., Spektralnaya teoriya operatorov i ee pril., 1985, no. 6, 144–181 | MR | Zbl

[10] Frunza St., “Generalized weights for operator Lie algebras”, Banach Center Publ., 8, PWN, Warsaw, 1982, 281–287 | DOI | MR

[11] Wojtynski W., “Quasinilpotent Banach–Lie algebras are Baker–Campbell–Hausdorff”, J. Func. Anal., 153 (1998), 405–413 | DOI | MR | Zbl

[12] Bupbaki H., Cpektralnaya teoriya, Mip, M., 1972

[13] Dosiev A. A., “Golomorfnye funktsii ot bazisa nilpotentnoi algebry Li”, Funkts. analiz i ego pril., 34:4 (2000), 82–84 | DOI | MR | Zbl

[14] Turovskii Yu. V., “Spektralnye svoistva elementov normirovannykh algebr i invariantnye podprostranstva”, Funkts. analiz i ego pril., 18:2 (1984), 77–78 | MR | Zbl

[15] Beltita D., “Spectrum for a solvable Lie algebra of operators”, Stud. Math., 135 (1999), 163–178 | DOI | MR | Zbl