Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2001_35_3_a7, author = {Sh. A. Ayupov and N. A. Azamov}, title = {Representation of {Skew-Hermitian} {Elements} in von {Neumann} {Algebras} by {Skew} {Commutators}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {75--77}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a7/} }
TY - JOUR AU - Sh. A. Ayupov AU - N. A. Azamov TI - Representation of Skew-Hermitian Elements in von Neumann Algebras by Skew Commutators JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2001 SP - 75 EP - 77 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a7/ LA - ru ID - FAA_2001_35_3_a7 ER -
%0 Journal Article %A Sh. A. Ayupov %A N. A. Azamov %T Representation of Skew-Hermitian Elements in von Neumann Algebras by Skew Commutators %J Funkcionalʹnyj analiz i ego priloženiâ %D 2001 %P 75-77 %V 35 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a7/ %G ru %F FAA_2001_35_3_a7
Sh. A. Ayupov; N. A. Azamov. Representation of Skew-Hermitian Elements in von Neumann Algebras by Skew Commutators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 75-77. http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a7/
[1] Fack Th., de la Harp P., “Sommes de commutateurs dans les algebres de von Neumann finies continues”, Ann. Inst. Fourier, Grenoble, 30:3 (1980), 49–70 | DOI | MR
[2] Ayupov Sh. A., Rakhimov A. A., Usmanov Sh. M., Jordan, Real and Lie Structures in Operator Algebras, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl
[3] Størmer E., “On anti-automorphisms of von Neumann algebras”, Pacif. J. Math., 21:2 (1967), 349–370 | DOI | MR
[4] Ayupov Sh. A., Klassifikatsiya i predstavlenie uporyadochennykh iordanovykh algebr, Izd-vo FAN, Tashkent, 1986 | MR
[5] Sadovskii V. Yu., Uzb. matem. zhurn., 1994, no. 1, 55–63 | MR
[6] Ayupov Sh. A., Azamov N. A., “Commutators and Lie isomorphisms of skew elements in prime operator algebras”, Comm. Algebra, 24:4 (1996), 1501–1520 | DOI | MR | Zbl