A Generalized Implicit Function Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 28-35

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem generalizing the classical implicit function theorem to the case in which the derivative of the map is a surjective continuous linear operator. We do not assume that the kernel of the derivative is a complemented subspace.
@article{FAA_2001_35_3_a2,
     author = {B. D. Gel'man},
     title = {A {Generalized} {Implicit} {Function} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a2/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - A Generalized Implicit Function Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 28
EP  - 35
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a2/
LA  - ru
ID  - FAA_2001_35_3_a2
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T A Generalized Implicit Function Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 28-35
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a2/
%G ru
%F FAA_2001_35_3_a2
B. D. Gel'man. A Generalized Implicit Function Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 28-35. http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a2/