A Generalized Implicit Function Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 28-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem generalizing the classical implicit function theorem to the case in which the derivative of the map is a surjective continuous linear operator. We do not assume that the kernel of the derivative is a complemented subspace.
@article{FAA_2001_35_3_a2,
     author = {B. D. Gel'man},
     title = {A {Generalized} {Implicit} {Function} {Theorem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {28--35},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a2/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - A Generalized Implicit Function Theorem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 28
EP  - 35
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a2/
LA  - ru
ID  - FAA_2001_35_3_a2
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T A Generalized Implicit Function Theorem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 28-35
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a2/
%G ru
%F FAA_2001_35_3_a2
B. D. Gel'man. A Generalized Implicit Function Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 28-35. http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a2/

[1] Bobylev N. A., Emelyanov S. V., Korovin S. K., Geometricheskie metody v variatsionnykh zadachakh, Magistr, M., 1998

[2] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[3] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[4] Michael E., “Continuous selections, 1”, Ann. of Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Voronezhskii gosuniversitet, Voronezh, 1986 | MR | Zbl

[6] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR