Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2001_35_3_a10, author = {V. A. Kurlin}, title = {Dynnikov {Three-Page} {Diagrams} of {Spatial} $3${-Valent} {Graphs}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {84--88}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a10/} }
V. A. Kurlin. Dynnikov Three-Page Diagrams of Spatial $3$-Valent Graphs. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a10/
[1] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Kodirovanie i lokalnye dvizheniya”, Funkts. analiz i ego pril., 33:4 (1999), 25–37 | DOI | MR | Zbl
[2] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Universalnaya polugruppa”, Funkts. analiz i ego pril., 34:1 (2000), 29–40 | DOI | MR | Zbl
[3] Kauffman L., “Invariants of graphs in three-space”, Trans. Amer. Math. Soc., 311:2 (1989), 697–710 | DOI | MR | Zbl
[4] Jonish D., Millett K. C., “Isotopy invariants of graphs”, Trans. Amer. Math. Soc., 327:2 (1991), 655–702 | DOI | MR | Zbl
[5] Taniyma K., “Cobordism, homotopy and homology of graphs in $\mathbb{R}^3$”, Topology, 33:3 (1994), 509–523 | DOI | MR
[6] Litherland R., “The Alexander module of a knotted theta-curve”, Math. Proc. Cambridge Philos. Soc., 106:1 (1989), 95–106 | DOI | MR | Zbl
[7] Stenford T., “Finite-type invariants of knots, links and graphs”, Topology, 35:4 (1996), 1027–1050 | DOI | MR
[8] Frank-Kamenetskii, Samaya glavnaya molekula, Bibliotechka “Kvant”
[9] Alberts i dr., Molekulyarnaya biologiya kletki, t. 1
[10] Shill G., Katenany, rotoksany i uzly, Mir, M., 1973
[11] Simon J., “Topological chirality of certain molecules”, Topology, 25 (1986), 229–235 | DOI | MR | Zbl
[12] Dynnikov I. A., “Konechno-opredelennye polugruppy i gruppy v teorii uzlov”, Trudy MIAN, 231, 2000, 231–248 | MR | Zbl