Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2001_35_3_a0, author = {M. S. Agranovich}, title = {Spectral {Problems} for the {Dirac} {System} with {Spectral} {Parameter} in {Local} {Boundary} {Conditions}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--18}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a0/} }
TY - JOUR AU - M. S. Agranovich TI - Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2001 SP - 1 EP - 18 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a0/ LA - ru ID - FAA_2001_35_3_a0 ER -
M. S. Agranovich. Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 1-18. http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a0/
[1] Levich V. G., Vdovin Yu. A., Myamlin V. A., Kurs teoreticheskoi fiziki, t. II, Nauka, M., 1971
[2] Hamacher P., Hinze J., “Finite-volume variational method for the Dirac equation”, Phys. Rev. A, 44:9 (1991), 1705–1711 | DOI | MR
[3] Szmytkowski R., “Unified construction of variational $R$-matrix methods for the Dirac equation”, Physical Review A, 57:6 (1998), 4351–4364 | DOI | MR
[4] Szmytkowski R., “Operator formulation of Wigner's $R$-matrix theories for the Schrödinger and Dirac equations”, J. Math. Phys., 39:10 (1998), 5231–5252 | DOI | MR | Zbl
[5] Szmytkowski R., Metoda R-macierzy dla róvnań Schrödingera i Diraca, monografie 3, Politechnika Gdańska, Gdańsk, 1999
[6] Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977 | MR | Zbl
[7] Agranovich M. S., Golubeva Z. N., “O nekotorykh zadachakh dlya sistemy Maksvella so spektralnym parametrom v granichnom uslovii”, DAN SSSR, 231:4 (1976), 777–780 | MR | Zbl
[8] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”, Dobavlenie v [6], 289–416
[9] Agranovich M. S., Katsenelenbaum B. Z., Sivov A. N., Voitovich N. N., Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin, 1999 | MR | Zbl
[10] Ivrii V., Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, Berlin etc., 1998 | MR | Zbl
[11] Booss-Bavnbek B., Woiciechowski K. P., Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston etc., 1993 | MR | Zbl
[12] Gelfand I. M., Minlos R. A., Shapiro Z. Ya., Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, M., 1958 | MR
[13] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR
[14] Agranovich M. S., Amosov B. A., “Otsenki $s$-chisel i spektralnye asimptotiki dlya integralnykh operatorov tipa potentsiala na negladkikh poverkhnostyakh”, Funkts. analiz i ego prilozh., 30:2 (1996), 1–18 | DOI | MR | Zbl
[15] Agranovich M. S., Ellipticheskie operatory na gladkikh mnogoobraziyakh, Itogi nauki i tekhniki, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, VINITI, M., 1990 | MR
[16] Agranovich M. S., “Ob ellipticheskikh operatorakh na zamknutoi krivoi”, Trudy MMO, 47, 1984, 22–67 | MR | Zbl
[17] Agranovich M. S., “Elliptic boundary problems”, Partial Differential Equations IX, Encyclopaedia of Math. Sciences, 79, Springer-Verlag, Berlin etc., 1997, 1–144 | DOI | MR | Zbl
[18] Kravchenko V. V., Castillo R., “An analogue of the Sommerfeld radiation condition for the Dirac operator. Clifford analysis in applications”, Math. Methods Appl. Sci., 25:16-18 (2002), 1383–1394 (to appear) | DOI | MR | Zbl