Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 1-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a spectral boundary value problem in a $3$-dimensional bounded domain for the Dirac system that describes the behavior of a relativistic particle in an electromagnetic field. The spectral parameter is contained in a local boundary condition. We prove that the eigenvalues of the problem have finite multiplicities and two points of accumulation, zero and infinity and indicate the asymptotic behavior of the corresponding series of eigenvalues. We also show the existence of an orthonormal basis on the boundary consisting of two-dimensional parts of the four-dimensional eigenfunctions.
@article{FAA_2001_35_3_a0,
     author = {M. S. Agranovich},
     title = {Spectral {Problems} for the {Dirac} {System} with {Spectral} {Parameter} in {Local} {Boundary} {Conditions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a0/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 1
EP  - 18
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a0/
LA  - ru
ID  - FAA_2001_35_3_a0
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 1-18
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a0/
%G ru
%F FAA_2001_35_3_a0
M. S. Agranovich. Spectral Problems for the Dirac System with Spectral Parameter in Local Boundary Conditions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 3, pp. 1-18. http://geodesic.mathdoc.fr/item/FAA_2001_35_3_a0/

[1] Levich V. G., Vdovin Yu. A., Myamlin V. A., Kurs teoreticheskoi fiziki, t. II, Nauka, M., 1971

[2] Hamacher P., Hinze J., “Finite-volume variational method for the Dirac equation”, Phys. Rev. A, 44:9 (1991), 1705–1711 | DOI | MR

[3] Szmytkowski R., “Unified construction of variational $R$-matrix methods for the Dirac equation”, Physical Review A, 57:6 (1998), 4351–4364 | DOI | MR

[4] Szmytkowski R., “Operator formulation of Wigner's $R$-matrix theories for the Schrödinger and Dirac equations”, J. Math. Phys., 39:10 (1998), 5231–5252 | DOI | MR | Zbl

[5] Szmytkowski R., Metoda R-macierzy dla róvnań Schrödingera i Diraca, monografie 3, Politechnika Gdańska, Gdańsk, 1999

[6] Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977 | MR | Zbl

[7] Agranovich M. S., Golubeva Z. N., “O nekotorykh zadachakh dlya sistemy Maksvella so spektralnym parametrom v granichnom uslovii”, DAN SSSR, 231:4 (1976), 777–780 | MR | Zbl

[8] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”, Dobavlenie v [6], 289–416

[9] Agranovich M. S., Katsenelenbaum B. Z., Sivov A. N., Voitovich N. N., Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH, Berlin, 1999 | MR | Zbl

[10] Ivrii V., Microlocal Analysis and Precise Spectral Asymptotics, Springer-Verlag, Berlin etc., 1998 | MR | Zbl

[11] Booss-Bavnbek B., Woiciechowski K. P., Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston etc., 1993 | MR | Zbl

[12] Gelfand I. M., Minlos R. A., Shapiro Z. Ya., Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, M., 1958 | MR

[13] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[14] Agranovich M. S., Amosov B. A., “Otsenki $s$-chisel i spektralnye asimptotiki dlya integralnykh operatorov tipa potentsiala na negladkikh poverkhnostyakh”, Funkts. analiz i ego prilozh., 30:2 (1996), 1–18 | DOI | MR | Zbl

[15] Agranovich M. S., Ellipticheskie operatory na gladkikh mnogoobraziyakh, Itogi nauki i tekhniki, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, VINITI, M., 1990 | MR

[16] Agranovich M. S., “Ob ellipticheskikh operatorakh na zamknutoi krivoi”, Trudy MMO, 47, 1984, 22–67 | MR | Zbl

[17] Agranovich M. S., “Elliptic boundary problems”, Partial Differential Equations IX, Encyclopaedia of Math. Sciences, 79, Springer-Verlag, Berlin etc., 1997, 1–144 | DOI | MR | Zbl

[18] Kravchenko V. V., Castillo R., “An analogue of the Sommerfeld radiation condition for the Dirac operator. Clifford analysis in applications”, Math. Methods Appl. Sci., 25:16-18 (2002), 1383–1394 (to appear) | DOI | MR | Zbl