On Asymptotic Homomorphisms into Calkin Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 81-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2001_35_2_a9,
     author = {V. M. Manuilov},
     title = {On {Asymptotic} {Homomorphisms} into {Calkin} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--84},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a9/}
}
TY  - JOUR
AU  - V. M. Manuilov
TI  - On Asymptotic Homomorphisms into Calkin Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 81
EP  - 84
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a9/
LA  - ru
ID  - FAA_2001_35_2_a9
ER  - 
%0 Journal Article
%A V. M. Manuilov
%T On Asymptotic Homomorphisms into Calkin Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 81-84
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a9/
%G ru
%F FAA_2001_35_2_a9
V. M. Manuilov. On Asymptotic Homomorphisms into Calkin Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 81-84. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a9/

[1] Arveson W., “Notes on extensions of $C^*$-algebras”, Duke Math. J., 44 (1977), 329–355 | DOI | MR | Zbl

[2] Bartle R. G., Graves L. M., “Mappings between function spaces”, Trans. Amer. Math. Soc., 72 (1952), 400–413 | DOI | MR | Zbl

[3] Brown L. G., Douglas R. G., Fillmore P. A., “Extensions of $C^*$-algebras and $K$-homology”, Ann. Math. (2), 105 (1977), 265–324 | DOI | MR | Zbl

[4] Busby R., “Double centralizers and extensions of $C^*$-algebras”, Trans. Amer. Math. Soc., 132 (1968), 79–99 | DOI | MR | Zbl

[5] Connes A., Higson N., “Deformations, morphismes asymptotiques et $K$-theorie bivariante”, C. R. Acad. Sci. Paris, Sér. I, 311 (1990), 101–106 | MR | Zbl

[6] Dădărlat M., Loring T. A., “$K$-homology, asymptotic representations, and unsuspended $E$-theory”, J. Funct. Anal., 126 (1994), 367–383 | DOI | MR

[7] Kasparov G. G., “Operatornyi $K$-funktor i rasshireniya $C^*$-algebr”, Izv. AN SSSR, ser. matem., 44 (1980), 571–636 | MR | Zbl

[8] Loring T. A., “Almost multiplicative maps between $C^*$-algebras”, Operator Algebras and Quantum Field Theory (Rome, 1996), Internat. Press, Cambridge, MA, 1997, 111–122 | MR | Zbl

[9] Manuilov V. M., Mischenko A. S., “Asimptoticheskie i fredgolmovy predstavleniya diskretnykh grupp”, Matem. sb., 189:10 (1998), 53–74 | DOI | MR | Zbl

[10] Manuilov V. M., Thomsen K., “Quasidiagonal extensions and sequentially trivial asymptotic homomorphisms”, Adv. Math., 154 (2000), 258–279 | DOI | MR | Zbl

[11] Manuilov V. M., Tomsen K., Algebra i analiz, 12:5 (2000), 142–157 | MR

[12] Mishchenko A. S., Mohammad N., “Asymptotic representations of discrete groups”, Lie Groups and Lie Algebras, Mathematics and its Applications, 433, Kluwer Acad. Publ., Dordrecht, 1998, 299–312 | MR | Zbl

[13] Pedersen G. K., $C^*$-algebras and their automorphism groups, Acad. Press, London–New York–San Francisco, 1979 | MR | Zbl