The Hilbert--Arnold Problem and an Estimate of the Cyclicity of Polycycles on the Plane and in Space
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2001_35_2_a8,
     author = {V. Y. Kaloshin},
     title = {The {Hilbert--Arnold} {Problem} and an {Estimate} of the {Cyclicity} of {Polycycles} on the {Plane} and in {Space}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {78--81},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a8/}
}
TY  - JOUR
AU  - V. Y. Kaloshin
TI  - The Hilbert--Arnold Problem and an Estimate of the Cyclicity of Polycycles on the Plane and in Space
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 78
EP  - 81
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a8/
LA  - ru
ID  - FAA_2001_35_2_a8
ER  - 
%0 Journal Article
%A V. Y. Kaloshin
%T The Hilbert--Arnold Problem and an Estimate of the Cyclicity of Polycycles on the Plane and in Space
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 78-81
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a8/
%G ru
%F FAA_2001_35_2_a8
V. Y. Kaloshin. The Hilbert--Arnold Problem and an Estimate of the Cyclicity of Polycycles on the Plane and in Space. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 78-81. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a8/

[1] Arnold V. I., Anosov D. V. i dr., Dinamicheskie sistemy – I. Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, VINITI, M., 1985

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, T. 1, Nauka, 1982 | MR

[3] Grigoriev A., Yakovenko S., “Topology of generic multijet preimages and blow-up via Newton interpolation”, J. Diff. Equations, 150:2 (1998), 349–362 | DOI | MR | Zbl

[4] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Appl. Math. Sci., 42, Springer-Verlag, New York–Berlin, 1983 | DOI | MR | Zbl

[5] Ilyashenko Yu. S., Yakovenko S. Yu., “Konechno-gladkie normalnye formy lokalnykh semeistv diffeomorfizmov i vektornykh polei”, UMN, 46:1(277) (1991), 3–39 | MR

[6] Ilyashenko Yu., Yakovenko S., Amer. Math. Soc. Transl. Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995, 1–20, 21–95 | MR

[7] Ilyashenko Yu., Kaloshin V., “Bifurcation of planar and spatial polycycles: Arnold's program and its development”, Proceedings of the Arnoldfest, Fields Inst. Comm., 24, Amer. Math. Soc., 1999, 241–271 | MR | Zbl

[8] Khovanskii A. G., Malochleny, Biblioteka matematika, 2, Fazis, M., 1997 | MR

[9] Shilnikov L. P., DAN SSSR, 160 (1965), 558–561