On the Hilbert Series of Koszul Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 64-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of examples is obtained which shows that, generally, it is impossible to decide for known Hilbert series of a qudratic algebra and its dual algebra whether or not this algebra has the Koszul property. The simplest example is given by two finitely generated algebras concentrated at the degrees not exceeding five; one of these algebras is monomial, while the other is not a Koszul algebra. This proves the conjecture of Positselskii [pos].
@article{FAA_2001_35_2_a5,
     author = {D. I. Piontkovskii},
     title = {On the {Hilbert} {Series} of {Koszul} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {64--69},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a5/}
}
TY  - JOUR
AU  - D. I. Piontkovskii
TI  - On the Hilbert Series of Koszul Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 64
EP  - 69
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a5/
LA  - ru
ID  - FAA_2001_35_2_a5
ER  - 
%0 Journal Article
%A D. I. Piontkovskii
%T On the Hilbert Series of Koszul Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 64-69
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a5/
%G ru
%F FAA_2001_35_2_a5
D. I. Piontkovskii. On the Hilbert Series of Koszul Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 64-69. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a5/

[1] Priddy S. B., “Koszul resolutions”, Trans. Amer. Math. Soc., 152:1 (1970), 39–60 | DOI | MR | Zbl

[2] Löfwall C., “On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra”, Lect. Notes Math., 1352, 1988, 291–338. | MR

[3] Backelin J., A distributiveness property of augmented algebras, and some related homological results, Ph. D. Thesis, Stockholm, 1982 | Zbl

[4] Positselskii L. E., “Sootnoshenie mezhdu ryadami Gilberta kvadratichno dvoistvennykh algebr ne vlechet ikh koshulevosti”, Funkts. analiz i ego pril., 29:3 (1995), 83–87 | MR

[5] Roos J.-E., “On the characterization of Koszul algebras. Four counter-examples”, C. R. Acad. Sci. Paris, Sér. I, 321:1 (1995), 15–20 | MR | Zbl

[6] Anick D., “Generic algebras and CW-complexes”, Algebraic topology and algebraic $K$-theory, Proc. Conf. Oct. 24–28, 1983, at Princeton Univ., dedicated to John C. Moore on his 60th birthday, Princeton Univ. Press, Princeton, 1987, 247–321 | MR | Zbl

[7] Manin Yu. I., “Some remarks on Koszul algebras and quantum groups”, Ann. Inst. Fourier, Grenoble, 37:4 (1987), 191–205 | DOI | MR | Zbl

[8] Anick D., “Diophantine equations, Hilbert series, and undecidable spaces”, Ann. Math., 122 (1985), 87–112 | DOI | MR | Zbl

[9] Govorov V. E., “O razmernosti graduirovannykh algebr”, Matem. zametki, 14:2 (1973), 209–216 | MR | Zbl

[10] Polishchuk A., Positselski L., Quadratic algebras, Preprint, 1996 | MR