On the Hilbert Series of Koszul Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 64-69

Voir la notice de l'article provenant de la source Math-Net.Ru

A family of examples is obtained which shows that, generally, it is impossible to decide for known Hilbert series of a qudratic algebra and its dual algebra whether or not this algebra has the Koszul property. The simplest example is given by two finitely generated algebras concentrated at the degrees not exceeding five; one of these algebras is monomial, while the other is not a Koszul algebra. This proves the conjecture of Positselskii [pos].
@article{FAA_2001_35_2_a5,
     author = {D. I. Piontkovskii},
     title = {On the {Hilbert} {Series} of {Koszul} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {64--69},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a5/}
}
TY  - JOUR
AU  - D. I. Piontkovskii
TI  - On the Hilbert Series of Koszul Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 64
EP  - 69
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a5/
LA  - ru
ID  - FAA_2001_35_2_a5
ER  - 
%0 Journal Article
%A D. I. Piontkovskii
%T On the Hilbert Series of Koszul Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 64-69
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a5/
%G ru
%F FAA_2001_35_2_a5
D. I. Piontkovskii. On the Hilbert Series of Koszul Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 64-69. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a5/