The Index Locality Principle in Elliptic Theory
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 37-52

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a general theorem on the behavior of the relative index under surgery for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov–Lawson, Anghel, Teleman, Booß-Bavnbek–Wojciechowski, et al. as special cases. In conjunction with some additional conditions (like symmetry conditions), this theorem permits computing the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities.
@article{FAA_2001_35_2_a3,
     author = {V. E. Nazaikinskii and B. Yu. Sternin},
     title = {The {Index} {Locality} {Principle} in {Elliptic} {Theory}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--52},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a3/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
AU  - B. Yu. Sternin
TI  - The Index Locality Principle in Elliptic Theory
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 37
EP  - 52
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a3/
LA  - ru
ID  - FAA_2001_35_2_a3
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%A B. Yu. Sternin
%T The Index Locality Principle in Elliptic Theory
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 37-52
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a3/
%G ru
%F FAA_2001_35_2_a3
V. E. Nazaikinskii; B. Yu. Sternin. The Index Locality Principle in Elliptic Theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 37-52. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a3/