The Index Locality Principle in Elliptic Theory
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 37-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a general theorem on the behavior of the relative index under surgery for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov–Lawson, Anghel, Teleman, Booß-Bavnbek–Wojciechowski, et al. as special cases. In conjunction with some additional conditions (like symmetry conditions), this theorem permits computing the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities.
@article{FAA_2001_35_2_a3,
     author = {V. E. Nazaikinskii and B. Yu. Sternin},
     title = {The {Index} {Locality} {Principle} in {Elliptic} {Theory}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--52},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a3/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
AU  - B. Yu. Sternin
TI  - The Index Locality Principle in Elliptic Theory
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 37
EP  - 52
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a3/
LA  - ru
ID  - FAA_2001_35_2_a3
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%A B. Yu. Sternin
%T The Index Locality Principle in Elliptic Theory
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 37-52
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a3/
%G ru
%F FAA_2001_35_2_a3
V. E. Nazaikinskii; B. Yu. Sternin. The Index Locality Principle in Elliptic Theory. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 2, pp. 37-52. http://geodesic.mathdoc.fr/item/FAA_2001_35_2_a3/

[1] Schulze B.-W., Sternin B., Shatalov V., “On the index of differential operators on manifolds with conical singularities”, Annals of Global Analysis and Geometry, 16:2 (1998), 141–172 | DOI | MR | Zbl

[2] Fedosov B. V., Schulze B.-W., Tarkhanov N., “The index of higher order operators on singular surfaces”, Pacific J. Math., 191:1 (1999), 25–48 | DOI | MR | Zbl

[3] Fedosov B. V., Schulze B.-W., Tarkhanov N., A Remark on the Index of Symmetric Operators, Univ. Potsdam, Institut für Mathematik, Potsdam, February 1998. Preprint 98/4 | MR

[4] Nazaikinskii V., Schulze B.-W., Sternin B., The Index of Quantized Contact Transformations on Manifolds with Conical Singularities, Univ. Potsdam, Institut für Mathematik, Potsdam, August 1998. Preprint 98/16 | MR

[5] Nazaikinskii V. E., Sternin B. Yu., Shultse B.-V., “Indeks kvantovannykh kontaktnykh preobrazovanii na mnogoobraziyakh s konicheskimi osobennostyami”, Dokl. RAN, 368:5 (1999), 598–600 | MR | Zbl

[6] Atiyah M. F. Singer I. M., “The index of elliptic operators on compact manifolds”, Bull. Amer. Math. Soc., 69 (1963), 422–433 | DOI | MR | Zbl

[7] Epstein C., Melrose R., “Contact degree and the index of Fourier integral operators”, Math. Res. Lett., 5:3 (1998), 363–381 | DOI | MR | Zbl

[8] Leichtnam E., Nest R., Tsygan B., Local formula for the index of a Fourier integral operator, , 2000 arXiv: /math.DG/0004022 | MR

[9] Agranovich M. S., “Ellipticheskie singulyarnye integrodifferentsialnye operatory”, UMN, 20:5 (1965), 3–20 | DOI | MR | Zbl

[10] Dezin A. A., Invariantnye differentsialnye operatory i granichnye zadachi, Trudy MIAN, 68, 1962 | MR | Zbl

[11] Agranovich M., “Elliptic boundary problems”, Partial Differential Equations IX. Elliptic Boundary Value Problems, Encyclopaedia of Mathematical Sciences, 79, eds. Agranovich M. S., Egorov Yu. V., Shubin M. A., Springer-Verlag, Berlin–Heidelberg, 1997, 1–144 | DOI | MR | Zbl

[12] Hsiung Ch.-Ch., “The signature and $G$-signarute of manifolds with boundary”, J. Differential Geom., 6 (1972), 595–598 | DOI | MR

[13] Hsiung Ch.-Ch., “A remark on cobordism of manifolds with boundary”, Arch. Math., 27 (1976), 551–555 | DOI | MR | Zbl

[14] Stong R. E., “Manifolds with reflecting boundary”, J. Differential Geom., 9 (1974), 465–474 | MR | Zbl

[15] Gilkey P. B., Smith L., “The eta invariant for a class of elliptic boundary value problems”, Comm. Pure Appl. Math., 36 (1983), 85–132 | DOI | MR

[16] Gilkey P. B. Smith L., “The twisted index problem for manifolds with boundary”, J. Differential Geom., 18:3 (1983), 393–444 | DOI | MR | Zbl

[17] Gilkey P. B., Invariance Theory, the Heat Equation and the Atiyah–Singer Index Theorem, Publish of Perish. Inc., Wilmington Delawaere, 1984 | MR | Zbl

[18] Booß-Bavnbek B., Wojciechowski K., Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston–Basel–Berlin, 1993 | MR | Zbl

[19] Gromov M., Lawson H. B. Jr., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Publ. Math. IHES, 58 (1983), 295–408 | DOI | MR

[20] Anghel N., “An abstract index theorem on non-compact Riemannian manifolds”, Houston J. of Math., 19 (1993), 223–237 | MR | Zbl

[21] Nazaikinskii V. E., Sternin B. Yu., “Lokalizatsiya i perestroiki v teorii indeksa ellipticheskikh operatorov”, Dokl. RAN, 370:1 (2000), 19–23 | MR

[22] Nazaikinskii V., Sternin B., Surgery and the Relative Index in Elliptic Theory, Univ. Potsdam, Institut für Mathematik, Potsdam, Juli 1999, Preprint 99/17 | MR

[23] Donnelly H., “Essential spectrum and the heat kernel”, J. Funct. Anal., 75 (1987), 362–381 | DOI | MR | Zbl

[24] Bunke U., “Relative index theory”, J. Funct. Anal., 105 (1992), 63–76 | DOI | MR | Zbl

[25] Dynin A. S., “Mnogomernye ellipticheskie granichnye zadachi s odnoi neizvestnoi funktsiei”, DAN SSSR, 141 (1961), 285–287 | MR | Zbl

[26] Agranovich M. S., Dynin A. S., “Obschie kraevye zadachi dlya ellipticheskikh sistem v mnogomernoi oblasti”, DAN SSSR, 146 (1962), 511–514 | MR | Zbl

[27] Teleman N., “The index of signature operators on Lipschitz manifolds”, Publ. Math. IHES, 58 (1984), 39–78 | DOI | MR

[28] Atiyah M. F., “Global theory of elliptic operators”, Proc. of the Int. Symposium on Functional Analysis, University of Tokyo Press, Tokyo, 1969, 21–30 | MR

[29] Melrose R., “The eta invariant of pseudodifferential operators and families”, Math. Res. Lett., 2:5 (1995), 541–561 | DOI | MR | Zbl

[30] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry, III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99 | DOI | MR | Zbl

[31] Schulze B.-W., Sternin B., Shatalov V., Semiclassical Theory and Operator Algebras, Mathematics Topics, 15, Wiley–VCH Verlag, Berlin–New York, 1998 | MR | Zbl

[32] Savin A. Yu., Sternin B. Yu., Shultse B.-V., “Ob invariantnykh formulakh indeksa spektralnykh kraevykh zadach”, Differentsialnye uravneniya, 35:5 (1999), 705–714 | MR | Zbl

[33] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[34] Nazaikinskii V. E., Sternin B. Yu., Shatalov V. E., Shultse B.-V., “Spektralnye kraevye zadachi i ellipticheskie uravneniya na mnogoobraziyakh s osobennostyami”, Differentsialnye uravneniya, 34:5 (1998), 695–708 | MR | Zbl

[35] Melrose R., “Transformation of boundary problems”, Acta Math., 147 (1981), 149–236 | DOI | MR | Zbl

[36] Weinstein A., “Fourier integral operators, quantization, and the spectra of a Riemannian manifolds”, Géométrie Symplectique et Physique Mathématique, Colloque Internationale de Centre National de la Recherche Scientifique, 237, 1975, 289–298 | MR

[37] Weinstein A., “Some questions about the index of quantized contact transformations”, RIMS Kôkûryuku, 104 (1977), 1–14 | MR