Continuous Almost Best Approximations in $C[0,1]$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 85-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2001_35_1_a9,
     author = {E. D. Livshits},
     title = {Continuous {Almost} {Best} {Approximations} in $C[0,1]$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--87},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a9/}
}
TY  - JOUR
AU  - E. D. Livshits
TI  - Continuous Almost Best Approximations in $C[0,1]$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 85
EP  - 87
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a9/
LA  - ru
ID  - FAA_2001_35_1_a9
ER  - 
%0 Journal Article
%A E. D. Livshits
%T Continuous Almost Best Approximations in $C[0,1]$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 85-87
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a9/
%G ru
%F FAA_2001_35_1_a9
E. D. Livshits. Continuous Almost Best Approximations in $C[0,1]$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 85-87. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a9/

[1] Chebyshëv P. L., Sochineniya, t. II, 1859, 151–235

[2] Konyagin S. V., “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl

[3] Maehly H., Witzgall Ch., “Tschebyscheff-Approximationen in kleinen Intervallen. II: Stetigkeitssätze für gebrochen rationale Approximationen”, Num. Math., 2:5 (1960), 293–307 | DOI | MR