Continuous Almost Best Approximations in $C[0,1]$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 85-87
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_2001_35_1_a9,
author = {E. D. Livshits},
title = {Continuous {Almost} {Best} {Approximations} in $C[0,1]$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--87},
year = {2001},
volume = {35},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a9/}
}
E. D. Livshits. Continuous Almost Best Approximations in $C[0,1]$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 85-87. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a9/
[1] Chebyshëv P. L., Sochineniya, t. II, 1859, 151–235
[2] Konyagin S. V., “O nepreryvnykh operatorakh obobschennogo ratsionalnogo priblizheniya”, Matem. zametki, 44:3 (1988), 404 | MR | Zbl
[3] Maehly H., Witzgall Ch., “Tschebyscheff-Approximationen in kleinen Intervallen. II: Stetigkeitssätze für gebrochen rationale Approximationen”, Num. Math., 2:5 (1960), 293–307 | DOI | MR