On the Continuability of Multivalued Analytic Functions to an Analytic Subset
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 62-73
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, it is shown that a germ of a many-valued analytic function can be continued analytically along the branching set at least until the topology of this set is changed. This result is needed to construct the many-dimensional topological version of Galois theory. The proof heavily uses Whitney's stratification.
@article{FAA_2001_35_1_a5,
author = {A. G. Khovanskii},
title = {On the {Continuability} of {Multivalued} {Analytic} {Functions} to an {Analytic} {Subset}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {62--73},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a5/}
}
TY - JOUR AU - A. G. Khovanskii TI - On the Continuability of Multivalued Analytic Functions to an Analytic Subset JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2001 SP - 62 EP - 73 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a5/ LA - ru ID - FAA_2001_35_1_a5 ER -
A. G. Khovanskii. On the Continuability of Multivalued Analytic Functions to an Analytic Subset. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 62-73. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a5/