On the Continuability of Multivalued Analytic Functions to an Analytic Subset
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 62-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is shown that a germ of a many-valued analytic function can be continued analytically along the branching set at least until the topology of this set is changed. This result is needed to construct the many-dimensional topological version of Galois theory. The proof heavily uses Whitney's stratification.
@article{FAA_2001_35_1_a5,
     author = {A. G. Khovanskii},
     title = {On the {Continuability} of {Multivalued} {Analytic} {Functions} to an {Analytic} {Subset}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {62--73},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a5/}
}
TY  - JOUR
AU  - A. G. Khovanskii
TI  - On the Continuability of Multivalued Analytic Functions to an Analytic Subset
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 62
EP  - 73
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a5/
LA  - ru
ID  - FAA_2001_35_1_a5
ER  - 
%0 Journal Article
%A A. G. Khovanskii
%T On the Continuability of Multivalued Analytic Functions to an Analytic Subset
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 62-73
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a5/
%G ru
%F FAA_2001_35_1_a5
A. G. Khovanskii. On the Continuability of Multivalued Analytic Functions to an Analytic Subset. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 62-73. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a5/

[1] Khovanskii A. G., “O predstavimosti funktsii v kvadraturakh”, UMN, 26:4 (1971), 251–252 | MR

[2] Khovanskii A. G., “Rimanovy poverkhnosti funktsii, predstavimykh v kvadraturakh”, Tezisy VI Vsesoyuznoi topologicheskoi konferentsii, Tbilisi, 1972, 125

[3] Khovanskii A. G., O predstavimosti funktsii v kvadraturakh, Dis. kand. fiz.-matem. nauk, MIAN SSSR im. V. A. Steklova, 1973

[4] Khovanskii A. G., “Topological obstructions for representability of functions by quadratures”, J. Dynamical Control Systems, 1:1 (1995), 99–132 | DOI | MR

[5] Fuks B. A., Vvedenie v teoriyu analiticheskikh funktsii mnogikh kompleksnykh peremennykh, Fizmatlit, M., 1962 | MR

[6] Goreski M., Makferson R., Stratifitsirovannaya teoriya Morsa, Mir, M., 1991