On the Finitization of the Gordon Identities
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove an identity generalizing the Andrews–Gordon identity. We also discuss the meaning of our formula from the viewpoints of geometry of affine flag varieties and of geometry of polyhedra.
@article{FAA_2001_35_1_a4,
     author = {S. A. Loktev and B. L. Feigin},
     title = {On the {Finitization} of the {Gordon} {Identities}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {53--61},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a4/}
}
TY  - JOUR
AU  - S. A. Loktev
AU  - B. L. Feigin
TI  - On the Finitization of the Gordon Identities
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 53
EP  - 61
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a4/
LA  - ru
ID  - FAA_2001_35_1_a4
ER  - 
%0 Journal Article
%A S. A. Loktev
%A B. L. Feigin
%T On the Finitization of the Gordon Identities
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 53-61
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a4/
%G ru
%F FAA_2001_35_1_a4
S. A. Loktev; B. L. Feigin. On the Finitization of the Gordon Identities. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 53-61. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a4/

[1] Feigin B., Frenkel E., “Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities”, Adv. Sov. Math., 16 (1993), 139–148 ; arXiv: /hep-th/9301039 | MR | Zbl

[2] Feigin B., Stoyanovsky A., Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, , RIMS 942; Стояновский А. В., Фейгин Б. Л., “Функциональные модели представлений алгебр токов и полубесконечные клетки Шуберта”, Функц. анализ и его прил., 28:1 (1994), 68–90 arXiv: /hep-th/9308079 | MR | Zbl

[3] Kedem R., Klassen T., McCoy B., Melzer E., “Fermionic sum representations for conformal field theory characters”, Phys. Lett. B, 307 (1993), 68–76 | DOI | MR | Zbl

[4] Pukhlikov A. B., Khovanskii A. G., “Teorema Rimana–Rokha dlya integralov i summ kvazipolinomov po virtualnym mnogogrannikam”, Algebra i analiz, 4 (1992), 188–216 | MR | Zbl

[5] Schilling A., Warnaar S. O., “Supernomial coefficients, polynomial identities and $q$-series”, Ramanujan J., 2 (1998), 459–494 ; arXiv: /q-alg/9701007 | DOI | MR | Zbl

[6] Warnaar S. O., , Comm. Math. Phys., 184, 1997 arXiv: /q-alg/9601012 | DOI | MR