Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2001_35_1_a12, author = {S. V. Shadrin}, title = {The {Complement} of the {Bifurcation} {Diagram} of {Trigonometric} {Polynomials}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {93--95}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a12/} }
S. V. Shadrin. The Complement of the Bifurcation Diagram of Trigonometric Polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 93-95. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a12/
[1] Barannikov S. A., “O prostranstve veschestvennykh mnogochlenov bez kratnykh kriticheskikh znachenii”, Funkts. analiz i ego pril., 26:2 (1992), 10–17 | MR | Zbl
[2] Shapiro B. Z., “O chisle komponent prostranstva trigonometricheskikh mnogochlenov stepeni $n$ s $2n$ razlichnymi kriticheskimi znacheniyami”, Mat. zametki, 62:4 (1997), 635–640 | DOI | MR | Zbl
[3] Arnold V. I., “Topological classification of real trigonometric polynomials and cyclic serpents polyhedron”, Arnold–Gelfand Mathematical Seminars, Birkhäuser, Boston, 1997, 101–106 | DOI | MR | Zbl