The Complement of the Bifurcation Diagram of Trigonometric Polynomials
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 93-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2001_35_1_a12,
     author = {S. V. Shadrin},
     title = {The {Complement} of the {Bifurcation} {Diagram} of {Trigonometric} {Polynomials}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--95},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a12/}
}
TY  - JOUR
AU  - S. V. Shadrin
TI  - The Complement of the Bifurcation Diagram of Trigonometric Polynomials
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 93
EP  - 95
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a12/
LA  - ru
ID  - FAA_2001_35_1_a12
ER  - 
%0 Journal Article
%A S. V. Shadrin
%T The Complement of the Bifurcation Diagram of Trigonometric Polynomials
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 93-95
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a12/
%G ru
%F FAA_2001_35_1_a12
S. V. Shadrin. The Complement of the Bifurcation Diagram of Trigonometric Polynomials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 93-95. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a12/

[1] Barannikov S. A., “O prostranstve veschestvennykh mnogochlenov bez kratnykh kriticheskikh znachenii”, Funkts. analiz i ego pril., 26:2 (1992), 10–17 | MR | Zbl

[2] Shapiro B. Z., “O chisle komponent prostranstva trigonometricheskikh mnogochlenov stepeni $n$ s $2n$ razlichnymi kriticheskimi znacheniyami”, Mat. zametki, 62:4 (1997), 635–640 | DOI | MR | Zbl

[3] Arnold V. I., “Topological classification of real trigonometric polynomials and cyclic serpents polyhedron”, Arnold–Gelfand Mathematical Seminars, Birkhäuser, Boston, 1997, 101–106 | DOI | MR | Zbl