Szegö Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 91-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{FAA_2001_35_1_a11,
     author = {I. B. Simonenko},
     title = {Szeg\"o {Type} {Limit} {Theorems} for {Multidimensional} {Discrete} {Convolution} {Operators} with {Continuous} {Symbols}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--93},
     year = {2001},
     volume = {35},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/}
}
TY  - JOUR
AU  - I. B. Simonenko
TI  - Szegö Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2001
SP  - 91
EP  - 93
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/
LA  - ru
ID  - FAA_2001_35_1_a11
ER  - 
%0 Journal Article
%A I. B. Simonenko
%T Szegö Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2001
%P 91-93
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/
%G ru
%F FAA_2001_35_1_a11
I. B. Simonenko. Szegö Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 91-93. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/

[1] Matematicheskaya entsiklopediya, T. 2, Sovetskaya entsiklopediya, M., 1979 | MR

[2] Szego G., “On certain Hermitian forms associated with the Fourier series of a positive function”, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem., 1952 (1952), 228–238 | MR | Zbl

[3] Grenander U., Segë G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961

[4] Linnik I. Yu., “Mnogomernyi analog predelnoi teoremy G. Sege”, Izv. AN SSSR, ser. matem., 39:6 (1975), 1393–1403 | MR | Zbl

[5] Widom H., “A theorem on translation kernels in $n$ dimensions”, Trans. Amer. Math. Soc., 94:1 (1960), 170–180 | DOI | MR | Zbl

[6] Böttcher A., Silbermann B., Invertibility and Asymptotics of Toeplitz Matrices, Akademie-Verlag, Berlin, 1983 | MR