Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2001_35_1_a11, author = {I. B. Simonenko}, title = {Szeg\"o {Type} {Limit} {Theorems} for {Multidimensional} {Discrete} {Convolution} {Operators} with {Continuous} {Symbols}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {91--93}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/} }
TY - JOUR AU - I. B. Simonenko TI - Szeg\"o Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2001 SP - 91 EP - 93 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/ LA - ru ID - FAA_2001_35_1_a11 ER -
%0 Journal Article %A I. B. Simonenko %T Szeg\"o Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols %J Funkcionalʹnyj analiz i ego priloženiâ %D 2001 %P 91-93 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/ %G ru %F FAA_2001_35_1_a11
I. B. Simonenko. Szeg\"o Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 91-93. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/
[1] Matematicheskaya entsiklopediya, T. 2, Sovetskaya entsiklopediya, M., 1979 | MR
[2] Szego G., “On certain Hermitian forms associated with the Fourier series of a positive function”, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem., 1952 (1952), 228–238 | MR | Zbl
[3] Grenander U., Segë G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961
[4] Linnik I. Yu., “Mnogomernyi analog predelnoi teoremy G. Sege”, Izv. AN SSSR, ser. matem., 39:6 (1975), 1393–1403 | MR | Zbl
[5] Widom H., “A theorem on translation kernels in $n$ dimensions”, Trans. Amer. Math. Soc., 94:1 (1960), 170–180 | DOI | MR | Zbl
[6] Böttcher A., Silbermann B., Invertibility and Asymptotics of Toeplitz Matrices, Akademie-Verlag, Berlin, 1983 | MR