Szegö Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 91-93
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{FAA_2001_35_1_a11,
author = {I. B. Simonenko},
title = {Szeg\"o {Type} {Limit} {Theorems} for {Multidimensional} {Discrete} {Convolution} {Operators} with {Continuous} {Symbols}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {91--93},
year = {2001},
volume = {35},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/}
}
TY - JOUR AU - I. B. Simonenko TI - Szegö Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2001 SP - 91 EP - 93 VL - 35 IS - 1 UR - http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/ LA - ru ID - FAA_2001_35_1_a11 ER -
I. B. Simonenko. Szegö Type Limit Theorems for Multidimensional Discrete Convolution Operators with Continuous Symbols. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 91-93. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a11/
[1] Matematicheskaya entsiklopediya, T. 2, Sovetskaya entsiklopediya, M., 1979 | MR
[2] Szego G., “On certain Hermitian forms associated with the Fourier series of a positive function”, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem., 1952 (1952), 228–238 | MR | Zbl
[3] Grenander U., Segë G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961
[4] Linnik I. Yu., “Mnogomernyi analog predelnoi teoremy G. Sege”, Izv. AN SSSR, ser. matem., 39:6 (1975), 1393–1403 | MR | Zbl
[5] Widom H., “A theorem on translation kernels in $n$ dimensions”, Trans. Amer. Math. Soc., 94:1 (1960), 170–180 | DOI | MR | Zbl
[6] Böttcher A., Silbermann B., Invertibility and Asymptotics of Toeplitz Matrices, Akademie-Verlag, Berlin, 1983 | MR