Spectral Properties of Solutions of the Burgers Equation with Small Dissipation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 1-15
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the asymptotic behavior as $\delta\to0$ of the Sobolev norm $\|u\|_m$ of the solution to the Cauchy problem for the one-dimensional quasilinear Burgers type equation $u_t+f(u)_x=\delta u_{xx}$ (It is assumed that the problem is $C^{\infty}$, the boundary conditions are periodic, and $f''\ge\sigma>0$.) We show that the locally time-averaged Sobolev norms satisfy the estimate $c_m\delta^{-m+1/2}\langle\|u\|_m^2\rangle^{1/2}$ ($m\ge1$). The estimates obtained as a consequence for the Fourier coefficients justify Kolmogorov's spectral theory of turbulence for the case of the Burgers equation.
@article{FAA_2001_35_1_a0,
author = {A. E. Biryuk},
title = {Spectral {Properties} of {Solutions} of the {Burgers} {Equation} with {Small} {Dissipation}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {1--15},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a0/}
}
A. E. Biryuk. Spectral Properties of Solutions of the Burgers Equation with Small Dissipation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 35 (2001) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/FAA_2001_35_1_a0/