One More Kind of the Classical Yang--Baxter Equation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 75-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2000_34_4_a6,
     author = {I. Z. Golubchik and V. V. Sokolov},
     title = {One {More} {Kind} of the {Classical} {Yang--Baxter} {Equation}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--78},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a6/}
}
TY  - JOUR
AU  - I. Z. Golubchik
AU  - V. V. Sokolov
TI  - One More Kind of the Classical Yang--Baxter Equation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 75
EP  - 78
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a6/
LA  - ru
ID  - FAA_2000_34_4_a6
ER  - 
%0 Journal Article
%A I. Z. Golubchik
%A V. V. Sokolov
%T One More Kind of the Classical Yang--Baxter Equation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 75-78
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a6/
%G ru
%F FAA_2000_34_4_a6
I. Z. Golubchik; V. V. Sokolov. One More Kind of the Classical Yang--Baxter Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 75-78. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a6/

[1] Belavin A. A., Drinfeld V. G., “O resheniyakh klassicheskogo uravneniya Yanga-Bakstera dlya prostykh algebr Li”, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | MR | Zbl

[2] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funkts. analiz i ego pril., 17:4 (1983), 17–33 | MR

[3] Golubchik I. Z., Sokolov V. V., “O nekotorykh obobscheniyakh metoda faktorizatsii”, TMF, 110:3 (1997), 339–350 | DOI | MR | Zbl

[4] Golubchik I. Z., Sokolov V. V., “Obobschennye uravneniya Gaizenberga na $\mathbb Z$-graduirovannykh algebrakh Li”, TMF, 120:2 (1999), 248–255 | DOI | MR | Zbl

[5] Golubchik I. Z., Sokolov V. V., “Integriruemye uravneniya na $\mathbb Z$-graduirovannykh algebrakh Li”, TMF, 112:3 (1997), 375–383 | DOI | MR | Zbl

[6] Drinfeld V. G., Sokolov V. V., Itogi nauki i tekhniki. Sovremennye problemy matematiki, 24, 1984, 81–180 | MR

[7] Bormisov A. A., Gudkova E. S., Mukminov F. Kh., “Ob integriruemosti giperbolicheskikh sistem tipa uravneniya Rikkati”, TMF, 113:2 (1997), 261–275 | DOI | MR

[8] Mikhailov A. V., Sokolov V. V., “Integriruemye obyknovennye differentsialnye uravneniya na svobodnykh assotsiativnykh algebrakh”, TMF, 122:1 (2000), 88–101 | DOI | MR | Zbl

[9] Frölicher A., Nijenhuis A., “Theory of vector-valued differential forms. I: Derivations of the graded ring of differential forms”, Indag. Math., 18 (1956), 338–359 | DOI | MR