Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2000_34_4_a6, author = {I. Z. Golubchik and V. V. Sokolov}, title = {One {More} {Kind} of the {Classical} {Yang--Baxter} {Equation}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {75--78}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a6/} }
I. Z. Golubchik; V. V. Sokolov. One More Kind of the Classical Yang--Baxter Equation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 75-78. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a6/
[1] Belavin A. A., Drinfeld V. G., “O resheniyakh klassicheskogo uravneniya Yanga-Bakstera dlya prostykh algebr Li”, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | MR | Zbl
[2] Semenov-Tyan-Shanskii M. A., “Chto takoe klassicheskaya $r$-matritsa”, Funkts. analiz i ego pril., 17:4 (1983), 17–33 | MR
[3] Golubchik I. Z., Sokolov V. V., “O nekotorykh obobscheniyakh metoda faktorizatsii”, TMF, 110:3 (1997), 339–350 | DOI | MR | Zbl
[4] Golubchik I. Z., Sokolov V. V., “Obobschennye uravneniya Gaizenberga na $\mathbb Z$-graduirovannykh algebrakh Li”, TMF, 120:2 (1999), 248–255 | DOI | MR | Zbl
[5] Golubchik I. Z., Sokolov V. V., “Integriruemye uravneniya na $\mathbb Z$-graduirovannykh algebrakh Li”, TMF, 112:3 (1997), 375–383 | DOI | MR | Zbl
[6] Drinfeld V. G., Sokolov V. V., Itogi nauki i tekhniki. Sovremennye problemy matematiki, 24, 1984, 81–180 | MR
[7] Bormisov A. A., Gudkova E. S., Mukminov F. Kh., “Ob integriruemosti giperbolicheskikh sistem tipa uravneniya Rikkati”, TMF, 113:2 (1997), 261–275 | DOI | MR
[8] Mikhailov A. V., Sokolov V. V., “Integriruemye obyknovennye differentsialnye uravneniya na svobodnykh assotsiativnykh algebrakh”, TMF, 122:1 (2000), 88–101 | DOI | MR | Zbl
[9] Frölicher A., Nijenhuis A., “Theory of vector-valued differential forms. I: Derivations of the graded ring of differential forms”, Indag. Math., 18 (1956), 338–359 | DOI | MR