When a Sum of Idempotents or Projections is a Multiple of the Identity
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 91-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{FAA_2000_34_4_a11,
     author = {V. I. Rabanovich and Yu. S. Samoilenko},
     title = {When a {Sum} of {Idempotents} or {Projections} is a {Multiple} of the {Identity}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--93},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a11/}
}
TY  - JOUR
AU  - V. I. Rabanovich
AU  - Yu. S. Samoilenko
TI  - When a Sum of Idempotents or Projections is a Multiple of the Identity
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 91
EP  - 93
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a11/
LA  - ru
ID  - FAA_2000_34_4_a11
ER  - 
%0 Journal Article
%A V. I. Rabanovich
%A Yu. S. Samoilenko
%T When a Sum of Idempotents or Projections is a Multiple of the Identity
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 91-93
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a11/
%G ru
%F FAA_2000_34_4_a11
V. I. Rabanovich; Yu. S. Samoilenko. When a Sum of Idempotents or Projections is a Multiple of the Identity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 91-93. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a11/

[1] Pearcy C., Topping D. M., “Sums of small numbers of idempotents”, Michigan Math. J., 14 (1967), 453–465 | DOI | MR | Zbl

[2] Fillmore P. A., “On sums of projections”, J. Funct. Anal., 4 (1969), 146–152 | DOI | MR | Zbl

[3] Hartwig R. E., Putcha M. S., “When is a matrix a sum of idempotents?”, Linear Multilinear Algebra, 26 (1990), 279–286 | DOI | MR | Zbl

[4] Wang J.-H., Ph. D. Dissertation, National Chiao Tung Univ., Hsinchu, Taiwan, 1991

[5] Bespalov Yu. N., Ukr. matem. zh., 44 (1992), 309–317 | MR

[6] Wu P. Y., Functional Analysis and Operator Theory, vol. 30, Banach Center Publ., Warszawa, 1994, 337–361 | MR | Zbl

[7] Bart H., Ehrhardt T., Silbermann B., “Zero sums of idempotents in Banach algebras”, Integral Equations Operator Theory, 19 (1994), 125–134 | DOI | MR | Zbl

[8] Ehrhardt T., unpublished, 1995

[9] Galinsky D. V., Muratov M. A., “On representations of algebras generated by sets of three and four orthoprojections”, Spectral Evolutionary Problems, vol. 8, Simferopol, Tavria, 1998, 15–22 | MR

[10] Ostrovskii V., Samoilenko Yu., Introduction to the Theory of Representations of Finitely Presented $*$-Algebras. 1. Representations by Bounded Operators, Gordon and Breach, London, 1999 | MR

[11] Gorodnii M. F., Podkolzin G. B., Spektralnaya teoriya operatorov i beskonechnomernyi analiz, IM AN USSR, Kiev, 1984, 66–76 | MR

[12] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz v zadachakh, Nauka, M., 1969 | MR | Zbl

[13] Cuntz J., “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl