Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2000_34_4_a11, author = {V. I. Rabanovich and Yu. S. Samoilenko}, title = {When a {Sum} of {Idempotents} or {Projections} is a {Multiple} of the {Identity}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {91--93}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a11/} }
TY - JOUR AU - V. I. Rabanovich AU - Yu. S. Samoilenko TI - When a Sum of Idempotents or Projections is a Multiple of the Identity JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2000 SP - 91 EP - 93 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a11/ LA - ru ID - FAA_2000_34_4_a11 ER -
V. I. Rabanovich; Yu. S. Samoilenko. When a Sum of Idempotents or Projections is a Multiple of the Identity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 4, pp. 91-93. http://geodesic.mathdoc.fr/item/FAA_2000_34_4_a11/
[1] Pearcy C., Topping D. M., “Sums of small numbers of idempotents”, Michigan Math. J., 14 (1967), 453–465 | DOI | MR | Zbl
[2] Fillmore P. A., “On sums of projections”, J. Funct. Anal., 4 (1969), 146–152 | DOI | MR | Zbl
[3] Hartwig R. E., Putcha M. S., “When is a matrix a sum of idempotents?”, Linear Multilinear Algebra, 26 (1990), 279–286 | DOI | MR | Zbl
[4] Wang J.-H., Ph. D. Dissertation, National Chiao Tung Univ., Hsinchu, Taiwan, 1991
[5] Bespalov Yu. N., Ukr. matem. zh., 44 (1992), 309–317 | MR
[6] Wu P. Y., Functional Analysis and Operator Theory, vol. 30, Banach Center Publ., Warszawa, 1994, 337–361 | MR | Zbl
[7] Bart H., Ehrhardt T., Silbermann B., “Zero sums of idempotents in Banach algebras”, Integral Equations Operator Theory, 19 (1994), 125–134 | DOI | MR | Zbl
[8] Ehrhardt T., unpublished, 1995
[9] Galinsky D. V., Muratov M. A., “On representations of algebras generated by sets of three and four orthoprojections”, Spectral Evolutionary Problems, vol. 8, Simferopol, Tavria, 1998, 15–22 | MR
[10] Ostrovskii V., Samoilenko Yu., Introduction to the Theory of Representations of Finitely Presented $*$-Algebras. 1. Representations by Bounded Operators, Gordon and Breach, London, 1999 | MR
[11] Gorodnii M. F., Podkolzin G. B., Spektralnaya teoriya operatorov i beskonechnomernyi analiz, IM AN USSR, Kiev, 1984, 66–76 | MR
[12] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz v zadachakh, Nauka, M., 1969 | MR | Zbl
[13] Cuntz J., “Simple $C^*$-algebras generated by isometries”, Comm. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl