On the Separation of Spectra in the Analysis of Berezin Kernels
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of restricting a highest weight representation of the group $\operatorname{U}(p,q)$ to the subgroup $\operatorname{O}(p,q)$ is considered. This restriction has an intricate spectrum that contains representations of different types. We construct a decomposition of this representation into reducible representations each of which has a single-type spectrum. Some integrals over classical groups are also calculated; these integrals generalize those of Hua.
@article{FAA_2000_34_3_a4,
     author = {Yu. A. Neretin},
     title = {On the {Separation} of {Spectra} in the {Analysis} of {Berezin} {Kernels}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - On the Separation of Spectra in the Analysis of Berezin Kernels
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 49
EP  - 62
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a4/
LA  - ru
ID  - FAA_2000_34_3_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T On the Separation of Spectra in the Analysis of Berezin Kernels
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 49-62
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a4/
%G ru
%F FAA_2000_34_3_a4
Yu. A. Neretin. On the Separation of Spectra in the Analysis of Berezin Kernels. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 3, pp. 49-62. http://geodesic.mathdoc.fr/item/FAA_2000_34_3_a4/

[1] Berezin F. A., “Kvantovanie v kompleksnykh simmetricheskikh prostranstvakh”, Izv. AN SSSR, ser. matem., 39:2 (1975), 363–402 | MR | Zbl

[2] Berezin F. A., “O svyazi mezhdu ko- i kontravariantnymi simvolami operatorov v klassicheskikh kompleksnykh oblastyakh”, DAN SSSR, 241:1 (1978), 15–17 | MR | Zbl

[3] van Dijk H., Hille S. C., “Canonical representations related to hyperbolic spaces”, J. Funct. Anal., 147 (1997), 109–139 | DOI | MR | Zbl

[4] van Dijk G., Molchanov V. F., “The Berezin form for rank $1$ para-hermitian symmetric spaces”, J. Math. Pure Appl., 77 (1998), 747–799 | DOI | MR | Zbl

[5] Faraut J., Koranyi A., Analysis in symmetric cones, Oxford Univ. Press, 1994 | MR | Zbl

[6] Faraut J., Olafsson G., “Causal semisimple symmetric spaces, the geometry and harmonic analysis”, Semigroups in Agebra, Geometry and Analysis, eds. Hofmann K. H., Lawson J. D., Vinberg E. B., Walter de Gruyter, Berlin, 1995, 3–32 | MR

[7] Gantmakher F. R., Teoriya matrits, 4-e izd., Nauka, M., 1988 | MR | Zbl

[8] Gelfand I. M., Gindikin S. G., “Kompleksnye mnogoobraziya, chi ostovy yavlyayutsya poluprostymi veschestvennymi gruppami Li, i golomorfnye diskretnye serii predstavlenii”, Funkts. analiz i ego pril., 11:4 (1977), 19–27 | MR

[9] Gindikin S., “Conformal analysis on hyperboloids”, J. Geom. Phys., 10 (1993), 175–184 | DOI | MR | Zbl

[10] Gutkin E., “Coeffitients of Clebsch–Gordan for holomorphic discrete series”, Lett. Math. Phys., 3 (1979), 185–192 | DOI | MR | Zbl

[11] Khua Lo Ken, Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959 | MR

[12] Jacobsen H., Vergne M., “Restrictions and expansions of holomorphic representations”, J. Funct. Anal., 34 (1979), 29–53 | DOI | MR

[13] Livshits M. S., “O spektralnom razlozhenii lineinykh nesamosopryazhennykh operatorov”, Matem. sb., 34 (1954), 145–199 | Zbl

[14] Molchanov V. F., “Razdelenie serii dlya giperboloidov”, Funkts. analiz i ego pril., 31:3 (1997), 35–43 | DOI | MR | Zbl

[15] Neretin Yu. A., “O diskretnykh vkhozhdeniyakh predstavlenii dopolnitelnoi serii v tenzornye proizvedeniya unitarnykh predstavlenii”, Funkts. analiz i ego pril., 20:4 (1986), 79–80 | MR | Zbl

[16] Neretin Yu. A., Kategorii simmetrii i konechnomernye gruppy, URSS, M., 1998

[17] Neretin Yu. A., “Ogranichenie funktsii, golomorfnoi v oblasti, na krivuyu, lezhaschuyu v granitse, i diskretnye $\operatorname{SL}_2(R)$-spektry”, Izv. RAN, ser. matem., 62:3 (1998), 67–86 | DOI | MR | Zbl

[18] Neretin Yu. A., “Boundary values of holomorphic functions and some spectral problems for unitary representations”, Positivity in Lie Groups: Open Problems, eds. Hilgert J., Lawson J. D., Need K.-H., Vinberg E. B., Walter de Gruyter, Berlin, 1998 | MR | Zbl

[19] Neretin Yu. A., Matrix analogues of $B$-function and Plancherel formula for Berezin kernel-representations, Preprint | MR

[20] J. Math. Sci., 87:6 (1997), 3983–4035 | DOI | MR | Zbl

[21] Ólafsson G., Ørsted B., “Bargmann transform for symmetric spaces”, Lie Theory and Its Applications in Physics, eds. Doebner H., Dobrev V. K., Hilgert J., World Scientific, 1996, 3–15 | MR

[22] Differential Geometry and Its Applications, 1:1 (1991), 297–308 | MR | MR

[23] Ørsted B., Zhang G., “Tensor products of analytic continuations of discrete series”, Can. J. Math., 49:6 (1997), 1224–1241 | DOI | MR

[24] Repka J., “On tensor products of holomorphic discrete series”, Can. J. Math., 31 (1979), 638–844 | DOI | MR

[25] Unterberger A., Upmeier H., “The Berezin transform and invariant differential operators”, Comm. Math. Phys., 164 (1994), 563–597 | DOI | MR | Zbl

[26] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya $\operatorname{SL}_2(R)$, gde $R$ – koltso funktsii”, UMN, 28:3 (1973), 3–41 | DOI | MR

[27] Neretin Yu. A., Plancherel formula for Berezin deformations of $L^2$ on Riemannian symmetric space, Preprint | MR