Spectral Theory of a Class of Canonical Differential Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 50-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general spectral theory of canonical systems is used to study a generalized Krein system. Direct and inverse problems for this system are considered. In particular, some proofs are supplied for Krein's results published by him without proof.
@article{FAA_2000_34_2_a5,
     author = {L. A. Sakhnovich},
     title = {Spectral {Theory} of a {Class} of {Canonical} {Differential} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {50--62},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a5/}
}
TY  - JOUR
AU  - L. A. Sakhnovich
TI  - Spectral Theory of a Class of Canonical Differential Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2000
SP  - 50
EP  - 62
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a5/
LA  - ru
ID  - FAA_2000_34_2_a5
ER  - 
%0 Journal Article
%A L. A. Sakhnovich
%T Spectral Theory of a Class of Canonical Differential Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2000
%P 50-62
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a5/
%G ru
%F FAA_2000_34_2_a5
L. A. Sakhnovich. Spectral Theory of a Class of Canonical Differential Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 34 (2000) no. 2, pp. 50-62. http://geodesic.mathdoc.fr/item/FAA_2000_34_2_a5/

[1] Krein M. G., “Kontinualnye analogi predlozhenii o mnogochlenakh, ortogonalnykh na edinichnoi okruzhnosti”, DAN SSSR, 105:4 (1955), 637–640 | MR | Zbl

[2] Sakhnovich L. A., “On one class of canonical systems on half-axis”, Integral Equations Operator Theory, 31:1 (1998), 92–112 | DOI | MR | Zbl

[3] Sakhnovich L. A., Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Operator Theory, Advances and Applications, 107, Birkhäuser Verlag, Basel, 1999 | MR | Zbl

[4] Potapov V. P., “Multiplikativnaya struktura $j$-nerastyagivayuschikh matrits-funktsii”, Trudy MMO, 4, 1955, 125–236 | MR | Zbl

[5] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[6] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950 | MR

[7] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Fizmatgiz, 1963 | MR

[8] Ginzburg Yu. P., “Multiplikativnye predstavleniya operator-funktsii ogranichennogo vida”, UMN, 22:1 (1967), 163–165 | MR

[9] Ginzburg Yu. P., Shevchuk L. V., “On the Potapov theory of multiplicative representations”, Operator Theory, Advances and Appl., 72, Birkhäuser Verlag, 1994, 28–47 | MR | Zbl

[10] Sakhnovich L. A., “Dissipativnye operatory s absolyutno nepreryvnym spektrom”, Trudy MMO, 19, 1968, 211–270 | MR | Zbl